Tag Archives: Subduction

Recycling of continental crust through time

Because continental crust is so light – an average density of 2700 kg m-3 compared with the mantles’ value of 3300 – it has been widely believed that continents cannot be subducted en masse. Yet it is conceivable that sial can be ‘shaved’ from below during subduction and from above by erosion and added to subductable sediment on the ocean floor. Certainly, there is overwhelming evidence for the net growth of continents through time and plenty for periods of increased and dwindling growth in the past. In some ancient orogens there are substantial slabs of continental composition whose mineralogy bears witness to ultra-high pressure metamorphism at depths greater than that of the base of continents. These slabs had been caught-up in subduction but never reached sufficiently high density to be retained by the mantle; they eventually ‘bobbed up’ again. On the other hand, if early continents were less silica rich through incorporation of substantial proportions of rock with basaltic composition parts of them could founder if subjected to high-pressure, low-temperature metamorphism. But not all crustal recycling to the mantle is through subduction. Some abnormally highly elevated parts of the continents that rose quickly in geological terms, such as the Tibetan Plateau, may have formed by lower crustal slabs becoming detached or delaminated from their base. Again modelling can help assess the past magnitude of continental recycling (Chowdhury, P. et al. 2017. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nature Geoscience, v. 10, p. 698-703; DOI: 10.1038/NGEO3010).

Various lines of evidence suggest that between 65 to 70% of the present continental volume existed by 3 billion years ago, yet that does not manifest itself in the rock record; perhaps a sign that some has returned to the mantle. It is also widely suggested that plate tectonics in the modern style began at about that time. Pryadarshi Chowdhury and colleagues simulate what may happen at depth in continent-continent collision zones – the classic site of orogenies –at different times in the past. Under the hotter conditions in the early Archaean mantle delamination would have been more likely than it has been during the Phanerozoic; i.e. the peeling off and sinking of the denser, more mafic lower crust and the attached upper mantle. The authors show that increased mantle temperature further back in time increases the likelihood and extent of such delamination. It also encourages partial melting of the descending continental material so creating rising bodies of more silicic magma that add to the remaining continent at the surface. Together with the lower crust’s attachment of to a mantle slab, this ensures that the peeled off material is able to descend under its own load. Once below a depth of 250 km felsic rocks are doomed to further descent. Waning of radiogenic mantle heat production encourages descending slabs to fail and break from the connection with lithosphere at higher levels so that a smaller proportion of the lower crust becomes detached and recycled. This evolution suggests that less and less continental crust is recycled with time. This broadly fits with current geochemical ideas based on the record of radiogenic Nd-, Sr- and Pb-isotopes in rocks ranging from early Archaean to Phanerozoic age.


Plate tectonic graveyard

Where do old plates go to die? For the most part, down subduction zones to mix with their original source, the mantle. Earth-Pages has covered evidence for quite a few of the dead plates, which emerges from a geophysical technique known as seismic tomography – analogous to X-ray or magnetic resonance scans of the whole human body. For 20 years geophysicists have been analysing seismograms from many stations across the globe for every digitally recorded earthquake, i.e. virtually all of those since the 1970s. This form of depth sounding goes far beyond early deep-Earth seismometry that discovered the inner and outer core, various transition zones in the mantle and measured the average variation with depth of mantle properties. Tomography relies on complex models of the paths taken by seismic body waves and very powerful computing to assess variations in the speed of P- and S-waves as they travelled through the Earth: the more rigid/cool the mantle is the faster waves travel through it and vice versa. The result is images of deep structure in 2-D slices, but the quality of such sections depends, ironically, on plate tectonics. Most earthquakes occur at plate boundaries. Such linearly distributed, one-dimensional sources inevitably leave the bulk of the mantle as a blur. Around 20 different methodologies have been developed by the many teams working on seismic tomography. So sometimes conflicting images of the deep Earth have been produced.

Results of seismic tomography across Central America showing anomalously fast (in blue) P- (top) and S-wave (bottom) speeds in map view at a fixed mantle depth (1290 km, left) and as vertical sections (right). The blue zones at right are interpreted to show a steeply dipping slab that represents subduction of the eastern Pacific Cocos plate since about 175 Ma ago (credit: van der Meer, D.G et al. ‘Atlas of the Underworld)

The technique has come of age now that superfast computing and use of multiple models have begun to resolve some of tomography’s early problems. The latest outcome is astonishing: ‘The Atlas of the Underworld’ catalogues 94 2-D sections from surface to the core-mantle boundary each of which spans 40° or arc – about a ninth of the Earth’s circumference (see: van der Meer, D.G., van Hinsbergen, D.J.J., and Spakman, W., 2017, Atlas of the Underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity, Tectonophysics online; doi.org/10.1016/j.tecto.2017.10.004). Specifically, the Atlas locates remnants of relatively cold slabs in the mantle that are suspected to be remnants of former subduction zones, or those that connect to active subduction. The upper parts of active slabs are revealed by the earthquakes generate along them. At deeper levels they are too ductile to have seismicity, so what form they take has long been a mystery. Once subduction stops, so do the telltale earthquakes and the slabs ‘disappear’.

The slabs covered by the ‘Atlas’ only go back as far as the end of the Permian, when the current round of plate tectonics began as Pangaea started to break-up. It takes 250 Ma for slabs to reach the base of the mantle and beyond that time they will have heated up and begun to be mixed into the lower mantle and invisible. Nevertheless, the rich resource allows models of vanished Mesozoic to Recent plates and the tectonics in which they participated, based on geological information, to be evaluated and enriched. Just as important, the project opens up the possibility of finding out how the mantle ‘worked’ since Pangaea broke up, in 3-D; a key to more than plate tectonics, including the mantle’s chemical heterogeneity. Already it has been used to estimate changes in the total length of subduction zones since 250 Ma ago, and thus arc volcanism and CO2 emissions, which correlates with estimates of past atmospheric CO2 levels, climate and even sea levels.

See also:  Voosen, P. 2016. ‘Atlas of the Underworld’ reveals oceans and mountains lost to Earth’s history. Science; doi:10.1126/science.aal0411.

Lee, H. 2017. The Earth’s interior is teeming with dead plates. Ars Technica UK, 18 October 2017.

So, when did plate tectonics start up?

Tiny, 4.4 billion year old zircon grains extracted from much younger sandstones in Western Australia are the oldest known relics of the Earth system. But they don’t say much about early tectonic processes. For that, substantial exposures of rock are needed, of which the undisputedly oldest are the Acasta gneisses 300 km north of Yellowknife in Canada’s North West Territories, which have an age of slightly more than 4 Ga. The ‘world’s oldest rock’ has been something of a grail for geologists and isotope geochemists who have combed the ancient Archaean cratons for 5 decades. But since the discovery of metasediments with an age of 3.8 Ga in West Greenland during the 1970s they haven’t made much headway into the huge time gap between Earth’s accretion at 4.54 Ga and the oldest known rocks (the Hadean Eon).

The Deccan Traps shown as dark purple spot on ...

Continental cratons (orange) where very-old rocks are likely to lurk. (credit: Wikipedia)

There have been more vibrant research themes about the Archaean Earth system, specifically the issue of when our planet settled into its modern plate tectonic phase A sprinkling of work on reconstructing the deep structural framework of Archaean relics has convinced some that opposed motion of rigid, brittle plates was responsible for their geological architecture, whereas others have claimed signs of a more plastic and chaotic kind of deformation of the outer Earth. More effort has been devoted to using the geochemistry of all the dominant rocks found in the ancient cratons, seeking similarities with and differences from those of more recent vintage. There can be little doubt that the earliest processes did form crust whose density prevented or delayed it from being absorbed into the mantle. Even the 4.4 Ga zircons probably crystallized from magma that was felsic in composition. Once trapped by buoyancy at the surface and subsequently wrapped around by similarly low density materials continental crust formed as a more or less permanent rider on the Earth’s deeper dynamics. But did it all form by the same kinds of process that we know to be operating today?

Plate tectonics involves the perpetual creation of rigid slabs of basalt-capped oceanic lithosphere at oceanic rift systems and their motions and interactions, including those with continental crust. Ocean floor cools as it ages and becomes hydrated by seawater that enters it. The bulk of it is destined eventually to oppose, head-to-head, the motions of other such plates and to deform in some way. The main driving force for global tectonics begins when an old, cold plate does deform, breaks, bends and drives downwards. Increasing pressure on its cold, wet basaltic top transforms it into a denser form: from a wet basaltic mineralogy (feldspar+pyroxene+amphibole) to one consisting of anhydrous pyroxene and garnet (eclogite) from which watery fluid is expelled upwards. Eclogite’s density exceeds that of mantle peridotite and compels the whole slab of oceanic lithosphere to sink or subduct into the mantle, dragging the younger parts with it. This gravity-induced ‘slab pull’ sustains the sum total of all tectonic motion. The water rising from it induces the wedge of upper mantle above to melt partially, the resulting magma evolves to produce new felsic crust in island arcs whose destiny is to be plastered on to and enlarge older continental masses.

Relics of eclogites and other high-pressure, low-temperature versions of hydrated basalts incorporated into continents bear direct and unchallengeable witness to plate tectonics having operated back to about 800 Ma ago. Before that, evidence for plate tectonics is circumstantial and in need of special pleading. Adversarial to-ing and fro-ing seems to be perpetual, between geoscientists who see no reason to doubt that Earth has always behaved in this general fashion and others who see room for very different scenarios in the distant past. The non-Huttonian tendency suggests an early, more ductile phase when greater radioactive heat production in the mantle produced oceanic crust so fast that when it interacted with other slabs it was hot enough to resist metamorphic densification wherever it was forced down. Faster production of magma by the mantle without slab-pull could have produced a variety of ‘recycling’ turnover mechanisms that were not plate-tectonic.

One thing that geochemists have discovered is that the composition of Archaean continental crust is very different from that produced in later times. In 1985 Ross Taylor and Scott McLennan, then of the Australian National University, hit on the idea of using shales of different ages as proxies for the preceding continental crust from which they had been derived by long erosion. Archaean and younger shales differed in such a way that suggests that after 2.5 Ga (the end of the Archaean) vast amounts of feldspar were extracted from the continent-forming magmas. This left the later Precambrian and Phanerozoic upper crust depleted in the rare-earth element europium, which ended up in a mafic, feldspar-rich lower crust. On the other hand, no such mass fractionation had left such a signature before 2.5 Ga. Another ANU geochemist, now at the University of Maryland, Roberta Rudnick has subsequently carried this approach further, culminating in a recent paper (Tang, M., Chen, K and Rudnick, R.L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, v. 351, p. 372-375). This uses nickel, chromium and zinc concentrations in ancient igneous and sedimentary rocks to track the contribution of magnesium (the ‘ma’ in ‘mafic’) to the early continents. The authors found that between 3.0 to 2.5 Ga continental additions shifted from a dominant more mafic composition to one similar to that of later times by the end of the Archaean. Moreover, this accompanied a fivefold increase in the pace of continental growth. Such a spurt has long been suspected and widely suggested to mark to start of true plate tectonics: but an hypothesis bereft of evidence.

A better clue, in my opinion, came 30 years ago from a study of the geochemistry of actual crustal rocks that formed before and after 2.5 Ga (Martin, H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, v. 14, p. 753-756). Martin showed that plutonic Archaean and post-Archaean felsic rocks of the continental crust lie in distinctly different fields on plots of their rare-earth element (REE) abundances. Archaean felsic plutonic rocks show a distinct trend of enrichment in light REE relative to heavy REE as measures of the degree of partial melting decreases, whereas the younger crustal rocks show almost constant, low values of heavy REE/light REE whatever the degree of melting. The conclusion he reached was that while in the post Archaean the source was consistent with modern subduction processes – i.e. partial melting of hydrated peridotite in the mantle wedge above subduction zones – but during the Archaean the source was hydrated, garnet-bearing amphibolite of basaltic composition, in the descending slab of subducted oceanic crust. Together with Taylor and McLennan’s lack of evidence for any fractional crystallization in Archaean continental growth, in contrast to that implicated in Post-Archaean times.

The geochemistry forces geologists to accept that a fundamental change took place in the generation and speed of continental growth at the end of the Archaean, marking a shift from a dominance of melting of oceanic, mafic crust to one where the upper mantle was the main source of felsic, low-density magmas. Yet, no matter how much we might speculate on indirect evidence, whether or not subduction, slab-pull and therefore plate tectonics dominated the Archaean remains an open question.

More on continental growth and plate tectonics

Seismic menace of the Sumatra plate boundary

More than a decade after the 26 December 2004 Great Aceh Earthquake and the Indian Ocean tsunamis that devastating experience and four more lesser seismic events (> 7.8 Magnitude) have show a stepwise shift in activity to the SE along the Sumatran plate boundary. It seems that stresses along the huge thrust system associated with subduction of the Indo-Australian Plate that had built up over 200 years of little seismicity are becoming unlocked from sector to sector along the Sumatran coast. Areas further to the SE are therefore at risk from both major earthquakes and tsunamis. A seismic warning system now operates in the Indian Ocean, but the effectiveness of communications to potential victims has been questioned since its installation. However, increasing sophistication of geophysical data and modelling allows likely zones at high risk to be assessed.

Recent Great Earthquakes in different segments of the Sumatra plate margin (credit: Tectonics Observatory, California Institute of Technology http://www.tectonics.caltech.edu/outreach/highlights/sumatra/why.html

Recent Great Earthquakes in different segments of the Sumatra plate margin (credit: Tectonics Observatory, California Institute of Technology http://www.tectonics.caltech.edu/outreach/highlights/sumatra/why.html

One segment is known to have experienced giant earthquakes in 1797 and 1833 but none since then. What is known as the Mentawai seismic gap lies between two other segments in which large earthquakes have occurred in the 21st century: it is feared that gap will eventually be filled by another devastating event. Geophysicists from the Institut de Physique du Globe de Paris and Nanyang Technological University in Singapore have published a high-resolution seismic reflection survey showing the subduction zone beneath the Mentawai seismic gap (Kuncoro, A.K. et al. 2015. Tsunamigenic potential due to frontal rupturing in the Sumatra locked zone. Earth and Planetary Science Letters, v. 432, p. 311-322). It shows that that the upper part of the zone, the accretionary wedge, is laced with small thrust-bounded ‘pop-ups’. The base of the accretionary wedge shows a series of small seaward thrusts above the subduction surface itself forming ‘piggyback’ or duplex structures.

Seismic reflection profile across part of the Sumatra plate boundary, showing structures produced by past seismicity. (credit: Kuncoro et al. 2015, Figure 3b)

Seismic reflection profile across part of the Sumatra plate boundary, showing structures produced by past seismicity. (credit: Kuncoro et al. 2015, Figure 3b)

The authors model the mechanisms that probably produced these intricate structures. This shows that the inactive parts of the plate margin have probably locked in stresses equivalent to of the order of 10 m of horizontal displacement formed by the average 5 to 6 cm of annual subduction of the Indo-Australian Plate over the two centuries since the last major earthquakes. Reactivation of the local structures by release of this strain would distribute it by horizontal movements of between 5.5 to 9.2 m and related 2 to 6.6 m vertical displacement in the pop-ups. That may suddenly push up the seafloor substantially during a major earthquake, thereby producing tsunamis. Whether or not this is a special feature of the Sumatra plate boundary that makes it unusually prone to tsunami production is not certain: such highly resolving seismic profiles need to be conducted over all major subduction zones to resolve that issue. What does emerge from the study is that a repeat of the 2004 Indian Ocean tsunamis is a distinct possibility, sooner rather than later.

Subduction and the water cycle

For many geoscientists and lay people the water cycle is considered to be part of the Earth’s surface system. That is, the cycle of evapotranspiration, precipitation and infiltration involving atmosphere, oceans, cryosphere, terrestrial hydrology and groundwater. Yet it links to the mantle through subduction of hydrated oceanic lithosphere and volcanism. The rate at which water vapour re-enters the surface part of the water cycle through volcanoes is reasonably well understood, but the same cannot be said about ‘recharge’ of the mantle through subduction.

Water cycle http://ga.water.usgs.gov/edu/water...

The water cycle as visualised by the US Geological Survey (credit: Wikipedia)

Subducted oceanic crust is old, cold and wet: fundamentals of plate theory. The slab-pull that largely drives plate tectonics results from phase transitions in oceanic crust that are part and parcel of low-temperature – high-pressure metamorphism. They involve the growth of the anhydrous minerals garnet and high-pressure pyroxene that constitute eclogite, the dense form taken by basalt that causes the density of subducted lithosphere to exceed that of mantle peridotite and so to sink. This transformation drives water out of subducted lithosphere into the mantle wedge overlying a subduction zone, where it encourages partial melting to produce volatile-rich andesitic basalt magma – the primary magma of island- and continental-arc igneous activity. Thus, most water that does reenter the mantle probably resides in the ultramafic lithospheric mantle in the form of hydrated olivine, i.e. the mineral serpentine, and that is hard to judge.

Water probably gets into the mantle lithosphere when the lithosphere bends to begin its descent. That is believed to involve faults – cold lithosphere is brittle – down which water can diffuse to hydrate ultramafic rocks. So the amount of water probably depends on the number of such bend-related faults. A way of assessing the degree of such faulting and thus the proportion of serpentinite is analysis of seismic records from subduction zones. This has been done from earthquake records from the West Pacific subduction zone descending beneath northern Japan (Garth, T. & Rietbrock, A. 2014. Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati-Bennioff zone. Geology, on-line publication doi:10.1130/G34730.1). The results suggest that between 17 to 31% of the subducted mantle there has been serpentinised.

In a million years each kilometre along the length of this subduction zone would therefore transfer between 170 to 318 billion tonnes of water into the mantle; an estimate more than ten times previous estimates. The authors observe that at such a rate a subduction zone equivalent to the existing, 3400 km long Kuril and Izu-Bonin arcs that affect Japan would have transferred sufficient water to fill the present world oceans 3.5 times over the history of the Earth. Had the entire rate of modern subduction along a length of 55 thousand kilometres been maintained over 4.5 billion years, the world’s oceans would have been recycled through the mantle once every 80 million years. To put that in perspective, since the Cretaceous Chalk of southern England began to be deposited, the entire mass of ocean water has been renewed. Moreover, subduction has probably slowed considerably through time, so the transfer of water would have been at a greater pace in the more distant past.

Enhanced by Zemanta

How the great Tohoku-Sendai earthquake and tsunami happened

English: Sendai Rinkai Railway locomotive(SD55...

Railway locomotive thrown aside by the 11 March 2011 Tsunami in Japan. (credit: Wikipedia)

The great Tohoku earthquake (moment magnitude 9.0) of 11 March 2011 beneath the Pacific Ocean off the largest Japanese island of Honshu resulted in the devastating tsunami that tore many kilometres inland along its northern coast line and affected the entire Pacific Basin (see NOAA animation of the tsunami’s propagation) . The area and indeed Japan itself have yet to recover from the devastation almost 3 years later. Over 18 thousand people died, witnessed by hundreds of millions of television viewers. The Fukashima Daiichi nuclear reactor had a catastrophic meltdown and release of radioactive materials displacing, along with the urban destruction by the tsunami, a third of a million people, many of whom are yet to be properly housed.

The seismic trigger happened at a plate boundary where lithosphere of the Western Pacific is being subducted beneath Japan. Subduction zone seismicity extends from shallow depths to as deep as 700 km beneath the surface. The destructive nature of the Tohoku eathquake stemmed from its occurrence at a shallow depth (~20-30 km) that allowed the motion to shove crustal material eastwards, up and over the sea floor to cause the sea floor to bulge upwards by tens of metres in a matter of seconds. It was that surface-breaking megathrust that displaced Pacific Ocean water and launched the huge tsunami waves. Geophysicists were caught by surprise as regards the magnitude of the event, having long considered that part of the Pacific ‘ring of fire’ to be incapable of generating seismic energies above a magnitude of 8.0; 32 times less energetic than the magnitude 9.0 that was reached in reality. The area to watch was believed to be the southwestern coastline of Japan, affected by subduction beneath the Sagami and Suguma Troughs. The reason for this attempt at anticipation in what is one of the world’s most risky places for seismicity is that theory suggested that subduction slip was greatest at depth and becomes smaller at shallower levels.

Clearly, a major scientific effort had to be undertaken to explain such a disastrous misconception. Part of this involved drilling into the seabed above the 11 March 2011 epicentre. The extracted rock cores revealed a major surprise (Chester, F.M. and 14 others. 2013. Structure and composition of the plate-boundary slip for the 2011 Tohoku-Oki earthquake. Science, v. 342, p. 1208-1211): the fault zone was a layer of clayey rock less than 5 m thick with a rupture zone for the Tohoku earthquake estimated at only a few centimetres across. Experiments revealed that hardly any heat had been generated by such a huge earthquake (Fulton, P.M. and 9 others 2013. Low coseismic friction on the Tohoku-Oki Fault determined from temperature measurements. Science, v. 342, p. 1214-1217). Friction had been extremely low, probably because the clay was so impermeable that water pressure in it was able to build up and not diffuse away (Ujie, K. and 9 others 2013. Low coseismic shear stress on the Tohoku-Oki Megathrust determined from laboratory experiments. Science, v. 342, p. 1211-12145). The thrust fault was lubricated, but fortunately one that was localised: unlike the strike-slip fault that drove the Indian Ocean tsunamis of 2005 which was able to propagate for over 1000 km.

While there is cause for some satisfaction among seismologists for a technical explanation, how the findings can be applied to better prediction of tsunami-prone subduction zones is not very clear.  It does seem that the Tohoku-Oki Fault has developed, probably over millions of years, in particularly clay-rich sea-floor sediments. Such a phenomenal amount of slippage would be less likely in coarser shallow sediments that would probably generate much more friction. Putting the findings into practice will involve greater investment in and speeding up oceanographic studies of submarine trench systems.

Brittle-ductile deformation in subduction zones

Almenning, Norway. The red-brown mineral is ga...

Eclogite: the red-brown mineral is garnet, omphacite is green and there is some white quartz.(credit: Kevin Walsh via Wikipedia)

The ultra-dense form of basalt, eclogite made from mainly garnet and a strange high-pressure, low-temperature pyroxene (omphacite) that forms from plagioclase and some of the basalt’s ferromagnesian minerals, is possibly the most important rock there is. Without the basalt to eclogite transition that takes place when ocean-floor is subducted the density of the lithosphere would be insufficient to pull more ocean floor to destruction and maintain the planetary circulation otherwise known as plate tectonics. Since the transition involves the formation of anhydrous eclogite from old, cold and wet basalt water is driven upwards into the mantle wedge that lies over subduction zones. The encourages partial melting which creates andesite magmas and island arcs, the ultimate source of the Earth’s continental crust.

Despite being cold and rigid, subducted oceanic lithosphere somehow manages to be moved en masse, showing its track by earthquakes down to almost 700 km below the Earth’s surface.  A major ophiolite in the Western Alps on the Franco-Italian border escaped complete loss to the mantle by rebounding upwards after being subducted and metamorphosed under high-P, Low-T condition when the Alps began to form. So the basaltic crustal unit is eclogite and that preserves a petrographic  record of what actually happened as it descended (Angiboust, S. et al. 2012. Eclogite breccia in a subducted ophiolite: A record of intermediate depth earthquakes? Geology, v.  40, p. 707-710). The French geologists found breccias consisting of gabbroic eclogite blocks set in a matrix of serpentinite and talc. The blocks themselves are breccias too, with clasts of eclogite mylonite set in fine-grained lawsonite-bearing eclogite. The relationships in the breccias point to possibly earthquake-related processes, grinding and fracturing basalt as it was metamorphosed: an essentially brittle process, yet the shearing that forms mylonites does seem reminiscent of ductile deformation too.

The deformation seems to have been at the middle level of oceanic crust where oceanic basalt lavas formed above cumulate gabbro, their plutonic equivalents. Yet much deformation was also at the gabbro-serpentinite or crust-mantle boundary, where water loss from serpentine may have helped lubricate some of the processes. Clearly the Monviso ophiolite will soon become a place to visit for geophysicists as well as metamorphic petrologists.

The ultra-deep carbon cycle

A scattering of "brilliant" cut diam...

Image via Wikipedia

The presence of diamonds in the strange, potassium-rich, mafic to ultramafic igneous rocks known as kimberlites clearly demonstrates that there is carbon in the mantle, but it could have come from either biogenic carbon having moved down subduction zones or the original meteoritic matter that accreted to form the Earth. Both are distinct possibilities for which evidence can only be found within diamonds themselves as inclusions. There is a steady flow of publications focussed on diamond inclusions subsidised to some extent by companies that mine them (see Plate tectonics monitored by diamonds in EPN, 2 August 2011). The latest centres on the original source rocks of kimberlites and the depths that they reached (Walter, M.J. and 8 others 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science, v. 334, p. 54-57). The British, Brazilian and US team analysed inclusions in diamonds from Brazil, finding assemblages that are consistent with original minerals having formed below the 660 km upper- to lower-mantle seismic boundary and then adjusting to decreasing pressure as the kimberlite’s precursor rose to melt at shallower levels. The minerals – various forms of perovskite stable at deep-mantle pressures – from which the intricate composites of several lower-pressure phases exsolved suggest the diamonds originated around 1000 km below the surface; far deeper than did more common diamonds. Moreover, their geochemistry suggests that the inclusions formed from deeply subducted basalts of former oceanic crust.

Previous work on the carbon isotopes in ‘super-deep’ diamonds seemed to rule out a biogenic origin for the carbon, suggesting that surface carbon does not survive subduction into the lower mantle. In this case, however, the diamonds are made of carbon strongly enriched in light 12C relative to 13C, with δ13C values of around -20 ‰ (per thousand), which is far lower than that found in mantle peridotite and may have been subducted organic carbon. If that proves to be the case it extends the global carbon cycle far deeper than had been imagined, even by the most enthusiastic supporters of the Gaia hypothesis.

Plate tectonics monitored by diamonds


Norwegian Eclogite. Image by kevinzim via Flickr

For more than 30 years a debate has raged about the antiquity of plate tectonics: some claim it has always operated since the Earth first acquired a rigid carapace not long after a molten state following formation of the Moon; others look to the earliest occurrences of island-arc volcanism, oceanic crust thrust onto continents as ophiolite complexes, and to high-pressure, low-temperature metamorphic rocks. The earliest evidence of this kind has been cited from as far apart in time as the oldest Archaean rocks of Greenland (3.9 Ga) and the Neoproterozoic (1 Ga to 542 Ma). A key feature produced by plate interactions that can be preserved are high-P, low-T rocks formed where old, cool oceanic lithosphere is pulled by its own increasing density into the mantle at subduction zones to form eclogites and blueschists. In the accessible crust, both rock types are unstable as well as rare and can be retrogressed to different metamorphic mineral assemblages by high-temperature events at lower pressures than those at which they formed. Relics dating back to the earliest subduction may be in the mantle, but that seems inaccessible. Yet, from time to time explosive magmatism from very deep sources brings mantle-depth materials to the surface in kimberlite pipes that are most commonly found in stabilised blocks of ancient continental crust or cratons. Again there is the problem of mineral stability when solids enter different physical conditions, but there is one mineral that preserves characteristics of its deep origins – diamond. Steven Shirer and Stephen Richardson of the Carnegie Institution of Washington and the University of Cape Town have shed light on early subduction by exploiting the relative ease of dating diamonds and their capacity for preserving other minerals captured within them (Shirey, S.B. & Richardson, S.H. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from the subcontinental mantle. Science, v. 333, p. 434-436). Their study used data from over four thousand silicate inclusions in previously dated large diamonds, made almost worthless as gemstones by their contaminants. It is these inclusions that are amenable to dating, principally by the Sm-Nd method. Adrift in the mantle high temperature would result in daughter isotopes diffusing from the minerals. Once locked within diamond that isotopic loss would be stopped by the strength of the diamond structure, so building up with time to yield an age of entrapment when sampled.  The collection spans five cratons in Australia, Africa, Asia and North America, and has an age spectrum from 1.0 to 3.5 Ga. Note that diamonds are not formed by subduction but grow as a result of reduction of carbonates or oxidation of methane in the mantle at depths between 125 to 175 km. In growing they may envelop fragments of their surroundings that formed by other processes.

A notable feature of the inclusions is that before 3.2 Ga only mantle peridotites (olivine and pyroxene) are trapped, whereas in diamonds younger than 3.0 Ga the inclusions are dominated by eclogite minerals (garnet and Na-, Al-rich omphacite pyroxenes). This dichotomy is paralleled by the rhenium and osmium isotope composition of sulfide mineral inclusions. To the authors these consistent features point to an absence of steep-angled subduction, characteristic of modern plate tectonics, from the Earth system before 3 Ga. But does that rule out plate tectonics in earlier times and cast doubt on structural and other evidence for it? Not entirely, because consumption of spreading oceanic lithosphere by the mantle can take place if basaltic rock is not converted to eclogite by high-P, low-T metamorphism when the consumed lithosphere is warmer than it generally is nowadays – this happens beneath a large stretch of the Central Andes where subduction is at a shallow angle. What Shirey and Richardson have conveyed is a sense that the dominant force of modern plate tectonics – slab-pull that is driven by increased density of eclogitised basalt – did not operate in the first 1.5 Ga of Earth history. Eclogite can also form, under the right physical conditions, when chunks of basaltic material (perhaps underplated magmatically to the base of continents) founder and fall into the mantle. The absence of eclogite inclusions seems also to rule out such delamination from the early Earth system. So whatever tectonic activity and mantle convection did take place upon and within the pre-3 Ga Earth it was probably simpler than modern geodynamics. The other matter is that the shift to dominant eclogite inclusions appears quite abrupt from the data, perhaps suggesting major upheavals around 3 Ga. The Archaean cratons do provide some evidence for a major transformation in the rate of growth of continental crust around 3 Ga; about 30-40 percent of modern continental material was generated in the following 500 Ma to reach a total of 60% of the current amount, the remaining 40% taking 2.5 Ga to form through modern plate tectonics

Atlantic subduction due soon!

Rio de Janeiro

Rio de Janeiro, a threatened city? Image by Alcindo Correa Filho via Flickr

Earthquake prediction has not had a good record, but it seems that vastly larger tectonic processes are now becoming the subject of risk analysis (Nikolaeva, K. et al. 2011. Numerical analysis of subduction initiation risk along the Atlantic American passive margins. Geology, v. 39, p. 463-466). The Swiss, Russian and Portuguese authors focus on the old (Jurassic ~170 Ma) and presumably cold oceanic lithosphere on the western flank of the Atlantic, against both the North and South American continents. Increased density with ageing imparts a potential downwards force, but that has to overcome resistance to plate failure at passive margins. The dominance of upper continental lithosphere by rheologically weak quartz tends to make it more likely to fail than more or less quartz-free oceanic lithosphere. So, if subduction at a passive continental margin is to take place, then where and when it begins depends on the nature of the abutting continental lithosphere. That on the Atlantic’s western flank varies a lot, ranging from 75-150 km thick. Consequently the temperature at the Moho, the junction between continental lithosphere and weaker asthenosphere, varies too. The loading by marginal sedimentation also plays a role, as do continent-wide forces associated with far-distant mountain ranges, such as the Western Cordillera and Andes, and the forces from opposed sea-floor spreading from the Juan de Fuca and East Pacific systems that affect the whole of western South America, most of Central America and the far NW of North America.

Analysing all pertinent forces acting along 9 lines of section through both North and South America, the authors’ focus fell on the relatively thin continental lithosphere of the Atlantic margin of South America. It is at its thinnest along the southernmost part of the margin adjacent to Brazil, where the Moho temperature reaches as high as 735°C: the weakest link in the American continental lithosphere, where there is seismicity and also indications of igneous activity. The modelling suggests that incipient deformation may begin off southern Brazil within 4 Ma to form a zone of overthrusting, eventually evolving towards failure of the ocean-continent interface and the start of proper subduction in the succeeding 20 Ma. Other stretches of the eastern Americas are deemed safe from subduction for considerably longer by virtue of their greater thickness, lower Moho temperatures and thus higher strength. It is an interesting situation because, insofar as I understand plate tectonics, extensional or compressional failure needed to generate plate boundaries must also propagate from the weak spots that first fail; plate boundaries are lines not points. If that does not happen, then the very strength of the overwhelming longer continent-ocean interface will surely prevent subduction at a single, albeit weak link.

Paper PDF at http://xa.yimg.com/kq/groups/13231164/1842350625/name/Geology-2011-Nikolaeva-463-6.pdf