Tag Archives: Continent formation

Archaean continents derived from Hadean oceanic crust

As DNA is to tracing  human evolution and migration, so various isotope systems are to the evolution of the Earth. One of the most fruitful is the samarium-neodymium (Sm-Nd) system. The decay of 147Sm to 143Nd is used in dating rocks across the full range of Earth history, given coeval rocks with a suitable range of Sm/Nd ratios, because the decay has a long half life (1.06 x 1011 years). However, samarium has another radioactive isotope 147Sm with a half life that is a thousand times shorter (1.06 x 108 years). So it remains only as a minute proportion of the total Sm in rocks, most having decayed since it was formed in a pre-Solar System supernova. But its daughter isotope 142Nd is present in easily measurable quantities, having accumulated from 147Sm decay over the first few hundred million years of Earth’s history; i.e. during the Hadean and earliest Archaean Eons. It is this fact that allows geochemists to get an indirect ‘handle’ on events that took place in the Earth’s earliest, largely vanished history. The principle behind this approach is that when an ancient rock undergoes partial melting to produce a younger magma the rock that crystallizes from it inherits the relative proportions of Nd isotopes of its source and thereby carries a record of the earlier history.

English: An outcrop of metamorphosed volcanose...

Metamorphosed volcanosedimentary rocks from the Porpoise Cove locality, Nuvvuagittuq supracrustal belt, Canada. Possibly the oldest rocks on Earth. (credit: Wikipedia)

The eastern shore of Hudson Bay in Canada hosts the oldest tangible geology known, in form of some metamorphosed basaltic rocks dated at 4200 Ma old known as the Nuvvuagittuq Greenstone Belt – the only known Hadean rocks. They occur in a tiny (20 km2) patch associated with gneisses of tonalite-trondjhemits-granodiorite composition that are dated between 3760 and 3350 Ma. Engulfing both are younger (2800 to 2500 Ma) Archaean plutonic igneous rocks of felsic composition. Jonathan O’Neil and Richard Carlson of the University of Ottawa, Canada and the Carnegie Institution for Science, Washington DC, USA respectively, measured proportions of Nd isotopes in both sets of felsic igneous rocks (O’Neil, J. & Carlson, R.W. 2017. Building Archean cratons from Hadean mafic crust. Science, v. 355, p. 1199-1202; doi:10.1126/science.aah3823).

The oldest gneisses contained relative proportions of 142Nd commensurate with them having been formed by partial melting of the Hadean mafic rocks about a few hundred million years after they had been erupted to form the oldest known crust; no surprise there. However, the dominant components of the local continental crust that are about a billion years younger also contain about the same relative proportions of 142Nd. A reasonable conclusion is that the Archaean continental crust of NE Canada formed by repeated melting of mafic crust of Hadean age over a period of 1.5 billion years. The modern Earth continually replenishes its oceanic crust over about 200 Ma due to plate tectonics. During the Archaean mantle dynamics would have been driven faster by much higher internal heat production. Had this involved simply faster plate tectonics the outermost skin of mafic crust would have been resorbed into the mantle even faster. By the end of the Archaean (2500 Ma) barely any Hadean crust should have been available to produce felsic magmas. But clearly at least some did linger, adding more weight to the idea that plate tectonics did not operate during the Hadean and Archaean Eons. See Formation of continents without subduction below.