Volcanism and sea level fall

Most volcanic activity stems from the rise of hot, deep rock, usually within the mantle. Pressure suppresses partial melting, so as hot rock rises the greater the chance that it will begin to melt without any rise in its temperature. That is the reason why mantle plumes are associated with many volcanic centres within plates. Extension at oceanic ridges allows upper mantle to rise in linear belts below rift systems giving rise to shallow partial melting, mid-ocean ridge basalts and sea-floor spreading. These aren’t the only processes that can reduce pressure to induce such decompression melting; any means of uplift will do, provided the rate of uplift exceeds the rate of cooling at depth. As well as tectonic uplift and erosion, melting of thick ice sheets and major falls in sea level may result in unloading of the lithosphere.

During Messinian Stage of the late Miocene up to 3 km of evaporitic salt was deposited in the deepest parts of the Mediterranean Basin. One mechanism might have been faster evaporation of seawater than its resupply from the Atlantic through the Straits of Gibraltar, similar to the way in which salts is deposited below the Dead Sea. But the salt layer beneath the modern Mediterranean Sea bed has interleaved riverine sediments containing fossils of land plants. The Straits had closed and the Mediterranean Sea evaporated away. From about 6 to 5.3 Ma ago sea level fell by 3 to 5 km, only returning to normal when the Straits reopened to launch the huge Zanclean flood, with which the Pliocene of southern Europe and North Africa commenced. A team from the Universities of Geneva, Orleans and Paris and the Instituto de Ciencias de la Tierra Jaume Almera in Barcelona has tested the hypothesis that the Messinian Crisis affected volcanic activity in the area (Sternai, P. et al. 2017. Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nature Geoscience, v. 10 online; doi:10.1038/ngeo3032).

From the record of salt precipitation, Pietro Sternai and colleagues, reckon that the main phase of unloading of the Mediterranean Basin began at around 5.6 Ma. Allowing for loading by the thick evaporites they calculated that the effect of the loss of water mass was equivalent to an unloading of 15 MPa in the deeper Eastern Mediterranean and 10 MPa in the west. Using standard pressure-temperature melting curves for the upper mantle, they then estimated that any magma chambers affected by the decrease in pressure could yield up to 17% more melt. Radiometrically dated lavas and igneous dykes within the Mediterranean region became more frequent and the number of events more than doubled during the time of main salt deposition.

https://upload.wikimedia.org/wikipedia/commons/thumb/6/64/DenglerSW-Stromboli-20040928-1230x800.jpg/1200px-DenglerSW-Stromboli-20040928-1230x800.jpg

Stromboli, one of the most active volcanoes in the Mediterranean Basin (credit: Wikipedia)

In May 2017 a study of subglacial volcanoes in West Antarctica based on radar mapping of the solid surface identified 138, 91 of them previously unknown (van Wyk de Vries et al. 2017. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica.  Geological Society, London, Special Publication 461) They lie within a buried rift system and are covered by thick ice. Only one volcano in Antarctica is known to be active, Erebus, which is part of the cluster. Most of the news items stemming from the publication mentioned the possibility that the buried volcanic tract could be adding to the instability of the West Antarctic Ice Sheet through heating up its base. The WAIS is the ice sheet most feared to collapse seawards leading to a rise of about 3 m in global sea level. If the 2 km thick WAIS did slide off its underlying crust it might possibly trigger reactivation of the volcanic cluster.

Advertisements

Neanderthal development

Despite the lingering public image that Neanderthals were not as bright as fully modern humans some had significantly larger brains than we do, albeit with most of the difference being in the rear part of the brain region. So they may have had different powers, such as enhanced vision and awareness of position (proprioception). Because there are few cranial fossils of immature Neanderthals and, for them, little evidence of ages, not much is known about how they developed from birth. A common assumption has been that because their brain was larger post-natal development much have been faster than in modern humans. Set against our slow post-natal development and the faster pace in chimpanzees this assumption has been used in support of limited Neanderthal cognitive abilities.

The El Sidron Neanderthal boy, including a reconstruction of his skull and brain cast. (credit: Antonio Rosas, Museo Nacional de Ciencias Naturales, Madrid, Spain)

The El Sidron cave in Asturias region of northern Spain has yielded fossil remains of a dozen Neanderthals dated at between 49 and 37 ka, the time when anatomically modern humans were also present in Europe. They are among the best studied examples of this human group. Three were of boys, the best preserved of whom is estimated to have died at 7.7 years old from analysis of his dental development (Rosas, A. and 10 others 2017. The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain). Science, v. 357, p. 1282-1287; doi:10.1126/science.aan6463) Analysis of signs of the maturation stage that he had reached, including that of his brain, show no fundamental difference from modern human juveniles in his overall pace of growth. Other workers have found that a similarly aged Homo erectus boy from Kenya had indeed developed more quickly than modern human juveniles.

It’s not much to go on, but the El Sidron boy supports the view that Neanderthals were not much different from us.

You can find more information on migration of modern humans here.

Ancient footprints

To see traces of where our forebears walked, such as the famous Australopithecus afarensis trackway at Laetoli in Tanzania, the footprints of Neanderthal children in 350 ka old Italian volcanic ash (The first volcanologists? Earth Pages March 2003) or even those of Mesolithic families in estuarine mud is about as heart stopping as it gets for a geologist. But imagine the astonishment of members of a multinational team working on Miocene shore-line sediments on Crete when they came upon a bedding surface covered with what are almost certainly the footprints of another bipedal animal from 5.7 Ma ago (Gierliński, G.D. et al. 2017. Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete? Proceedings of the Geologists’ Association, online; https://doi.org/10.1016/j.pgeola.2017.07.006). Trackways preserve a few moments in time, however old they are and the chances of their being preserved are very small, yet they can supply information that is lost from even the best preserved fossil, such as gait, weight, speed and so forth.

Untitled-4

Track bearing surface; (b) two footprints in 5.7 Ma old Miocene sediments at Trachilos, Crete (credit: Gierliński, G.D. et al. 2017; Figures 2 and 8)

The tracks clearly indicate that whatever left them was bipedal and lacked claws, and closely resemble those attributed to A. afarensis at Laetoli in a 3.7 Ma old volcanic ash. What they do not resemble closely are those of non-hominin modern primates, such as chimpanzees. They are diminutive compared with adult modern human prints, being about 12.5 cm long (equivalent to a UK child’ shoe size 4 – US size 4.5, EU 20) and about a third to half the size of those at Laetoli. Were they around the age of those at Laetoli or younger there seems little doubt that they would be widely interpreted as being of hominin origin. But being from an island in the Mediterranean as well as far from sites in Africa that have yielded Miocene hominins (Ardipithecus kadabba from Ethiopia, Orrorin from Kenya and Sahelanthropus from Chad),  such an interpretation is bound to create controversy. Somewhat less controversial might be to regard them as having been created by a late-Miocene primate that convergently evolved a hominin-like upright gait and foot. Being preserved in what seem to be coastal marine sediments, there is probably little chance of body fossils being preserved in the exposed horizon. Since foot bones are so fragile, even if a primate fossil is discovered in the late Miocene of Crete the chances of resolving the issue are pretty remote. Yet fossil primate specialists will undoubtedly beat a well-trodden path to the Trachilos site near Kissamos on Crete

Wildfires and climate at the K-Pg boundary

It is now certain that the Cretaceous-Palaeogene boundary 66 Ma ago coincided with the impact of a ~10 km diameter asteroid that produced the infamous Chicxulub crater north of Mexico’s Yucatán peninsula. Whether or not this was the trigger for the mass extinction of marine and terrestrial fauna and flora – the flood basalts of the Deccan Traps are still very much in the frame – the worldwide ejecta layer from Chicxulub coincides exactly with the boundary that separates the Mesozoic and Cenozoic Eras. As well as shocked quartz grains, anomalously high iridium concentrations and glass spherules the boundary layer contains abundant elemental carbon, which has been widely ascribed to soot released by vegetation that went up in flames on a massive scale. Atmospheric oxygen levels in the late Cretaceous were a little lower than those at present, or so recent estimates from carbon isotopes in Mesozoic to Recent ambers suggest (Tappert, R. et al. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochimica et Cosmochimica Acta, v. 121, p. 240-262,) – other estimates put the level substantially above that in modern air. Whatever, global wildfires occurred within the time taken for the Chicxulub ejecta to settle from the atmosphere; probably a few years. It has been estimated that about 700 billion tonnes of soot were laid down, suggesting that most of the Cretaceous terrestrial biomass and even a high proportion of that in soils literally went up in smoke.

Charles Bardeen and colleagues at the University of Colorado, Boulder, have modelled the climatic and chemical effects of this aspect of the catastrophe (Bardeen, C.G. et al. 2017. On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences; doi:10.1073/pnas.1708980114). Despite the associated release of massive amounts of CO2 and water vapour by both the burning and the impact into seawater, giving increased impetus to the greenhouse effect, the study suggests that fine-grained soot would have lingered as an all enveloping pall in the stratosphere. Sunlight would have been blocked for over a year so that no photosynthesis would have been possible on land or in the upper ocean, the temperatures of the continent and ocean surfaces would have dropped by as much as 28 and 11 °C respectively to cause freezing temperatures at mid-latitudes. Moreover, absorption of solar radiation by the stratospheric soot layer would have increased the temperature of the upper atmosphere by several hundred degrees to destroy the ozone layer. Consequently, once the soot cleared the surface would have had a high ultraviolet irradiation for around a year.

The main implication of the modelling is a collapse in both green terrestrial vegetation and oceanic phytoplankton; most of the food chain would have been absent for long enough to wipe out those animals that depended on it entirely. While an enhanced greenhouse effect and increased acidification of the upper ocean through CO2 emissions by the Deccan flood volcanism would have placed gradually increasing and perhaps episodic stresses on the biosphere, the outcome of the Chicxulub impact would have been immediate and terrible.

More on mass extinctions and impacts here and here

Water-borne arsenic back in the news

In the 1980s grim news began to emerge from the Indian State of West Bengal and a decade later from neighbouring Bangladesh. Villagers from the low-lying delta plains of the Ganges and Brahmaputra river systems at the head of the Bay of Bengal began to present at clinics with disfiguring skin lesions or keratoses on hands and feet, loss of feeling in fingers and toes and dark skin patches on their torsos. The latter were colloquially known as ‘black rain’. The victims were often stigmatised, as their neighbours believed they were suffering from leprosy. These symptoms were followed a few years later by increased incidences of lung, liver, kidney and bladder cancers. The first medical practitioner to recognise these typical signs of chronic arsenic poisoning in 1983, Dr Depankar Chakraborti of Kolkata, was branded as a ‘panic monger’ by local authorities. His warnings, backed by evidence published by the World Health Organisation (WHO) in 1988 that there was a connection with high arsenic levels in West Bengal drinking water supplies from new tubewells, went largely unheeded for a decade. Tragically, as it turned out, thousands of tubewells had been sunk in the Bengali delta plains from the 1970s onwards, aimed at reducing the risk of disease from pathogens in the previously used surface water from ponds and streams. After a conference on the perceived problem, organized in Kolkata by Dr Chakraborti in 1995, the WHO declared the situation in Bangladesh to be a ‘Major Public Health Issue’, and the world’s press took up the story. Clearly, millions of Bengali villagers were at risk or were already suffering from chronic arsenic poisoning. By the late 1990s thousands of samples of tubewell waters from the delta plains had been analysed, many of which revealed arsenic levels far above the 10 μg l-1 safe threshold. In 2002, 400 Bangladeshi victims sued the British Geological Survey (BGS) for negligence. The BGS had analysed 150 water samples from the Bangladesh delta plains in 1992 and had not reported any risks, but arsenic was not among the elements being analysed. The civil action eventually failed.

Skin lesions or keratoses that are symptomatic of chronic arsenic poisoning

Almost two decades after the arsenic scandal on the eastern side of the subcontinent well-water analyses showing high arsenic values have been published from the Indus plains of Pakistan (Podorski, J.E. et al. 2017. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advances, v. 3,; doi:10.1126/wsciadv.1700935). The Indus catchment having a similar Himalayan source and being at a similar latitude it has long been considered to be at potential risk from arsenic derived from its thick alluvial sediments. The Swiss-Pakistani-Chinese team have produced geochemical data from 1200 tubewells throughout the catchment within Pakistan. A swath from Lahore to Karachi, with the country’s greatest population density, is at high risk of water with arsenic concentrations above the WHO guideline safe concentration, suggesting some 50 to 60 million people being subject to its hazard.

Although the geological setting is similar to that in the Bengal plains, a different natural chemical process causes the high concentrations ultimately from the iron hydroxide veneer on sediment grains which selectively absorbs several trace elements, including arsenic, from river water. In Bangladesh arsenic is released from sediments as a result of highly reducing conditions due to organic matter buried in some layers of alluvium, by a process known as reductive dissolution – when insoluble ferric iron (Fe3+) hydroxide (goethite) is exposed to a ready supply of electrons the iron is reduced to the soluble ferrous (Fe2+) form and the mineral breaks down to release its absorbed trace elements. Most of the alluvium in the Indus plain contains little organic carbon, so another mechanism is implicated. The high arsenic levels correlate with high pH in the groundwater and therefore seem most likely to be released from goethite grain coatings by alkaline water. That, in turn, is often a product of high evaporation and salinisation from the massive irrigation using groundwater in semi-arid southern Pakistan. The alkaline water then returns to the underlying groundwater in the highly permeable Indus alluvium; i.e. it is a consequence of irrigated agriculture rather than of a natural geochemical process as in more humid Bengal.

Whereas a remedy in Bangladesh and West Bengal has been to sink new tubewells into oxidising alluvial strata (red coloured rather than the reducing grey sediments)  that yield water with safe arsenic levels, the risky areas in Pakistan may need expensive use of absorbent filters on a large scale to remove the hazard. Because irrigation using groundwater is on such a large scale on the Indus plain there is also a definite risk of ingesting arsenic from crops produced there, principally rice but also unwashed leaf vegetables

See also:

http://www.bbc.co.uk/news/science-environment-41002005

http://www.sciencemag.org/news/2017/08/arsenic-drinking-water-threatens-60-million-pakistan

http://www.dawn.com/news/1353482/50-million-at-risk-of-arsenic-poisoning-in-pakistan?preview

https://www.dawn.com/news/1354023

Early modern humans in Sumatra before the Toba eruption

In late July 2017 news emerged that modern humans first reached Australia at least 65 thousand years ago. Confirming that the date of departure from Africa to end up in SE Asia and Australasia was  considerable earlier than previously believed, deposits in Sumatra that contain remains of early Home sapiens have yielded even older ages (Westaway, K.E. and 22 others 2017. An early modern human presence in Sumatra 73,000–63,000 years ago. Nature v. 548 online; doi:10.1038/nature23452). This resulted from a re-examination of material from the Padang Caves first excavated more than a century ago by Eugène Dubois, famous for his discovery in Java of the first H. erectus remains. A richly fossiliferous breccia in the Lida Ajer cave yielded a fauna characteristic of a rainforest biome and included two teeth that Dubois considered to be human. Several later palaeontologists confirmed his identification as have hominin specialists in the present Australian-Indonesian-American-British-Dutch-German team. The fossil assemblage has long suggested great antiquity for the site, but only now has it been dated precisely. The dating employed three methods: optically stimulated luminescence dating of quartz grains from the breccia (85±25 to 62±5  ka); uranium-series dating of speleothem including fragments of hollow ‘soda-straw’ stalactites(84±1 to 71±7 ka); uranium-series dating of gibbon and orangutan teeth found together with the human teeth (86±13 to 76±7 ka). Statistical analysis of the age data suggests 73 to 63 ka for the fauna, with a maximum age for deposition of the breccia of 84±1 ka.

Satellite image of Lake Toba, the site of a VE...

Satellite image of Lake Toba in NW Sumatra (at centre), the site of the largest volcanic eruption during the history of human evolution ~71,600 years ago (credit: Wikipedia)

Stone tools which may have been carried by anatomically modern humans into the area have previously been used to suggest a minimum date of the arrival of migrants, though they may have been carried by ­H. erectus. Remarkably, such tools have been found beneath a thick bed of volcanic ash found throughout southern Asia and in Indian Ocean sediment cores. This has been dated at 71.6 ka and represents the explosive collapse of the caldera now containing Lake Toba in NW Sumatra that was the largest volcanic event in the entire history of the genus Homo. The new age data from Lida Ajer suggests that modern humans were present in its vicinty before the eruption, a view also supported by ‘molecular-clock’ dating of the range of mitochondrial DNA carried by living SE Asian people (79 to 75 ka). So, despite the stupendous magnitude of the Toba eruption is seems likely that some of the migrants survived.  Together with the dating of the earliest Australians the Sumatran evidence is at odds with the view, widely held by palaeoanthropologists, that the ‘Out of Africa’ exodus began by crossing the Straits of Bab el Mandab between 74 and 58 ka when global sea-level fell markedly during marine oxygen-isotope Stage 4 (MIS4). A problem with that hypothesis has been that climatic and ecological conditions in southern Asia during MIS4 were unfavourable. But is seems that modern humans were already there and capable of adapting to both the climate shift and to the devastation undoubtedly caused by Toba.

The late-Ordovician mass extinction: volcanic connections

The dominant feature of Phanerozoic stratigraphy is surely the way that many of the formally named major time boundaries in the Stratigraphic Column coincide with sudden shifts in the abundance and diversity of fossil organisms. That is hardly surprising since all the globally recognised boundaries between Eras, Periods and lesser divisions in relative time were, and remain, based on palaeontology. Two boundaries between Eras – the Palaeozoic-Mesozoic (Permian-Triassic) at 252 Ma and Mesozoic-Cenozoic (Cretaceous-Palaeogene) at 66 Ma – and a boundary between Periods – Triassic-Jurassic at 201 Ma – coincide with enormous declines in biological diversity. They are defined by mass extinctions involving the loss of up to 95 % of all species living immediately before the events. Two other extinction events that match up to such awesome statistics do not define commensurately important stratigraphic boundaries. The Frasnian Stage of the late-Devonian closed at 372 Ma with a prolonged series of extinctions (~20 Ma) that eliminated  at least 70% of all species that were alive before it happened. The last 10 Ma of the Ordovician period witnessed two extinction events that snuffed out about the same number of species. The Cambrian Period is marked by 3 separate events that in percentage terms look even more extreme than those at the end of the Ordovician, but there are a great many less genera known from Cambrian times than formed fossils during the Ordovician.

Untitled-1

Faunal extinctions during the Phanerozoic in relation to the Stratigraphic Column.

Empirical coincidences between the precise timing of several mass extinctions with that of large igneous events – mainly flood basalts – suggest a repeated volcanic connection with deterioration of conditions for life. That is the case for four of the Famous Five, the end-Ordovician die-off having been ascribed to other causes; global cooling that resulted in south-polar glaciation of the Gondwana supercontinent and/or an extra-solar gamma-ray burst (predicated on the preferential extinction of Ordovician near-surface, planktonic fauna such as some trilobite families). Neither explanation is entirely satisfactory, but new evidence has emerged that may support a volcanic trigger (Jones, D.S. et al. 2017. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, v. 45, p. 631-634; doi:10.1130/G38940.1). David Jones and his US-Japan colleagues base their hypothesis on several very strong mercury concentrations in thin sequences in the western US and southern China of late Ordovician marine sediments that precede, but do not exactly coincide with, extinction pulses. They ascribe these to large igneous events that had global effects, on the basis of similar Hg anomalies associated with extinction-related LIPs. Yet no such volcanic provinces have been recorded from that time-range of the Ordovician, although rift-related volcanism of roughly that age has been reported from Korea. That does not rule out the possibility as LIPs, such as the Ontong Java Plateau, are known from parts of the modern ocean floor that formed in the Mesozoic and Cenozoic. Ordovician ocean floor was subducted long ago.

The earlier Hg pulses coincide with evidence for late Ordovician glaciations over what is now Africa and eastern South America. The authors suggest that massive volcanism may then have increased the Earth’s albedo by blasting sulfates into the stratosphere. A similar effect may have resulted from chemical weathering of widely exposed flood basalts which draws down atmospheric CO2. The later pulses coincide with the end of Gondwanan glaciation, which may signify massive emanation of volcanic CO2 into the atmosphere and global warming. Despite being somewhat speculative, in the absence of evidence, a common link between the Big Five plus several other major extinctions and LIP volcanism would quieten their popular association with major asteroid and/or comet impacts currently being reinvigorated by drilling results from the K-Pg Chicxulub crater offshore of Mexico’s Yucatan Peninsula.

New dates for earliest human occupation of Australia

When modern humans first reached Australia has an importance beyond the starting date for the island continent’s archaeology and confirmation that their ancestors are the oldest known migrants from Africa. The first native Australians carried within their genome important information about the minimum date at which some non-Africans interbred with more archaic Neanderthal and Denisovan humans, traces of whose DNA are are present in that of living Australian aborigines. Most dating of when modern humans first reached different parts of the non-African world has relied on the radiocarbon method, which is suspect from beyond 40 to 45 ka as 14C produced earlier has decayed to levels that are now below the practical limit of detection and measurement. It is therefore no accident that the bulk of ‘first-arrival’ dates for Eurasia and Australasia are around 45 ka. In fact, any accurate age, however old, for the earliest skeletal remains only indicates the minimum date of arrival until other remains are discovered.

Reliable dating of earlier events in the Pleistocene relies on other methods, the most important for settings other than speleothem from caves being optically stimulated luminescence (OSL) applied to soil minerals that estimates their time of burial. Briefly, molecules of soil grains made of a mineral such as quartz are ‘charged-up’ with energy by radiation emitted by unstable isotopes in the soil. Exposure to light releases that stored energy in the form of luminescence. Measuring the amount of luminescence emitted by optically stimulated grains therefore gives a measure of the time since they were buried and ceased to be exposed to sunlight.

Madjedbebe rock shelter

The Madjedbebe rock shelter in Arnhem Land, Northern Territories, Australia. (Credit: Chris Clarkson, University of Queensland)

A re-evaluation of the Madjedbebe site in the Northern Territory, widely accepted as having yielded Australia’s oldest artefacts in 1989, takes back human occupation more than 20 thousand years before previous estimates (Clarkson and 27 others 2017. Human occupation of northern Australia by 65, 000 years ago. Nature, v.  547, p. 306-310; doi:10.1038/nature22968). The soil profile in the Madjedbebe rock shelter turns out to be littered with artefacts – including hearths, tools and blocks of ochre and reflective mica pigments, plus remnants of plant foods – to a depth of ~2.5 m, with three particularly dense accumulations. Carbon-rich remains are also present throughout the profile which provided a means of accurate calibration and confirmation of OSL dates back as far as the radiocarbon method allows, giving confidence in the older OSL dates that extend to 65.0±5.7 ka in the earliest zone of dense artefact finds. Because the modern DNA of Australia’s first native people shows no sign of mixture with other modern humans, this places the timing of modern human interbreeding with archaic people before this time. The age also predates the range when the continent’s megafauna began to decline to eventual extinction, which supports the view that it was anthropogenic.

See also: Marean, C.W. 2017. Early signs of human presence in Australia. Nature, v.  547, p. 285-287; doi:10.1038/547285a.

Gas hydrates: a warning from the past

Detailed acoustic imaging above the Troll gas field in the northern North Sea off western Norway has revealed  tens of thousands of elliptical pits on the seabed. At around 10 to 20 per square kilometre over an area of about 15,000 km2 there are probably between 150 to 300 thousand of them. They range between 10 to 100 m across and are about 6 m deep on average, although some are as deep as 20 m. They are pretty much randomly distributed but show alignment roughly parallel to regional N-S sea-floor currents. Many of the world’s continental shelves display such pockmark fields, but the Troll example is among the most extensive. Almost certainly the pockmarks formed by seepage of gas or water to the surface. However, detailed observations suggest they are inactive structures with no sign of bubbles or fluid seepage. Yet the pits cut though glacial diamictites deposited by the most recent Norwegian Channel Ice Stream through which icebergs once ploughed and which is overlain by thin Holocene marine sediments. One possibility is that they record gas loss from the Troll field, another being destabilisation of shallow gas hydrate deposits.

Troll pockmarks

Parts of the Troll pockmark field off Norway. A: density of pockmarks in an area of 169 square km. B: details of a cluster of pockmarks. (Credit: Adriano Mazzini, Centre for Earth Evolution and Dynamics (CEED) University of Oslo)

Norwegian geoscientists have studied part of the field in considerable detail, analysing carbonate-rich blocks and foraminifera in the pits (Mazzini, A. and 8 others 2017. A climatic trigger for the giant Troll pockmark field in the northern North Sea. Earth and Planetary Science Letters, v. 464, p. 24-34; http://dx.doi.org/10.1016/j.epsl.2017.02.014). The carbonates show very negative δ13C values that suggest the carbon in them came from methane, which could indicate either of the two possible means of formation. However, U-Th dating of the carbonates and radiocarbon ages of forams in the marine sediment infill suggest that they formed at around 10 ka ago; 1500 years after the end of the Younger Dryas cold episode and the beginning of the Holocene interglacial. Most likely they represent destabilisation of a once-extensive, shallow layer of methane hydrates in the underlying sediments, conditions during the Younger Dryas having been well within the stability field of gas hydrates. Sporadic leaks from the deeper Troll gas field hosted by Jurassic sandstones is unlikely to have created such a uniform distribution of gas-release pockmarks. Adriano Mazzini and colleagues conclude that rapid early Holocene warming led to sea-floor temperatures and pressures outside the stability field of gas hydrates. There are few signs that hydrates linger in the area, explaining the present inactivity of the pockmarks – all the methane and CO2 escaped before 10 ka.

Gas hydrates are thought to be present beneath shallow seas today, wherever sea-floor sediments have a significant organic carbon content and within the pressure-temperature window of stability of these strange ice-like materials. Mazzini et al.’s analysis of the Troll pockmark field clearly has profound implications for the possible behaviour of gas hydrates at a time of global climatic warming. As well as their destabilisation adding to methane release from onshore peat deposits currently locked by permafrost and a surge in global warming, there is an even more catastrophic possibility. The whole of the seaboard of the southern North Sea was swept by a huge tsunami about 8000 years ago, which possibly wiped out Mesolithic human occupancy of lowland Britain, the former land mass of Doggerland, and the ‘Low Countries’ of western Europe. This was created by a massive submarine landslide – the Storegga Slide just to the north of the Troll field – which may have been triggered by destabilisation of submarine gas hydrates during early Holocene warming of the oceans.

Steam-bath Earth

The Earth’s mantle probably contained a significant amount of water from the start. Its earliest history was one of intense bombardment, including the impact that formed the Moon. Together with the conversion of gravitational potential energy to heat while the core was settling out from the mantle, impacts would have kept its overall temperature high enough to prevent water vapour from condensing on the surface until such heat input ceased and heat loss by radiation allowed the surface rapidly to cool. The atmosphere would have been rich in water vapour. Evidence from zircons that are the earliest tangible materials yet recovered hint at the formation of Zr-rich magmas – probably granitic in the broad sense – about 100 Ma after the Moon-forming event (see EPN July 2001: Zircons’ window on the Hadean). Yet no trace of substantial granitic rocks that old have ever been found.

Don Baker and Kassandra Sofonio of McGill University in Montreal, Canada have considered processes other than partial melting or fractional crystallisation that may have been possible during the earliest Hadean. In particular they have looked at one thought once to be a contender in the genesis of granite and latterly sidelined (Baker, D.R. & Sofonio, K. 2017. A metasomatic mechanism for the formation of Earth’s earliest evolved crust. Earth and Planetary Science Letters, v. 463, p. 48-55; http://dx.doi.org/10.1016/j.epsl.2017.01.022 ). They heated powdered artificial samples that chemically resembled the Earth’s original silicate mantle in sealed double capsules – an inner part containing the silicate powder and an outer one containing water. The capsules were held at around 727°C for a time and then quenched. The outer part of each capsule was found to be a glass of roughly granite composition. The experimental design ensured that superheated water diffused across the inner-outer capsule wall. So the ‘granite’ must have formed by a metasomatic process – essentially preferential solution of its component elements in supercritical water – the experimental temperature being insufficient to partially melt the ultramafic charge in the inner capsule.

Baker and Sofonio conclude that degassing of this metasomatic fluid – silicate-rich ‘steam’ – may have produced substantial masses of sialic crust on the Earth’s surface. Removal of material produced in such a manner would also have extracted trace elements with an affinity for granite from the early mantle – so-called incompatible elements. The subsequent recycling of such granitic blobs back into the mantle may explain geochemical signs in >500 Ma younger Archaean crust – produced by ‘normal’ igneous processes – of incompatible-element enriched reservoirs in the Early mantle.