Category Archives: Planetary, extraterrestrial geology, and meteoritics

Banded iron formations (BIFs) reviewed

This image shows a 2.1 billion years old rock ...

2.1 billion years old boulder of banded ironstone. (credit: Wikipedia)

During most of the last hundred years every car body, rebar rod in concrete, ship, bridge and skyscraper frame had its origins in vividly striped red rocks from vast open-pit mines. Comprising mainly iron oxides with some silica, these banded iron formations, or BIFs for short, occur in profitable tonnages on every continent. But commercial reserves are confined mainly to sedimentary sequences dating from about 3 to 2 billion years ago. They are not the only commercial iron formations, but dominate supplies from estimated reserves of around 105 billion tons. From a non-commercial standpoint they are among the most revealing kinds of sediment as regards the Earth system and its evolution. All scientific aspects of BIFs and similar Fe-rich sediments are reviewed in a recent volume of Earth Science Reviews. (Konhauser, K.O. and 12 others 2017. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Science Reviews, v. 172, p. 140-177; doi: 10.1016/j.earscirev.2017.06.012).

The chemical, mineral and isotopic compositions of BIFs form a detailed repository of the changing composition of seawater during a crucial period for the evolution of Earth and life – the transition from an anoxic surface environment to one in which water and air contained a persistent proportion of oxygen, known as the Great Oxidation Event (GOE). Paradoxically, BIFs are highly oxidized rocks, the bulk of which formed when other rocks show evidence for vanishingly small amounts of oxygen in the surface environment. The paradox began to be resolved when it was realized that ocean-ridge basaltic volcanism and sea-floor hydrothermal activity would have released vast amounts of soluble, reduced iron-2 into anoxic seawater, in the upper parts of which the first photosynthetic organisms evolved. Evidence for the presence of such cyanobacteria first appears around 3.5 billion years ago, in the form of carbonates whose structure suggests they accumulated from growth of microbial mats. Oxygen generated by photosynthesis in iron-rich water immediately acts to oxidize soluble iron-2 to iron-3 to yield highly insoluble iron oxides and hydroxides and thus deposits of BIFs. While oceans were iron-rich, formation of ironstones consumed ecologically available oxygen completely.

Other biological processes seem to have been involved in ironstone formation, such as photosynthesis by other bacteria that used dissolved iron-2 instead of water as a reductant for CO2, to release iron-3 instead of oxygen. That would immediately combine with OH­ ions in water to precipitate iron hydroxides. Konhauser and colleagues cogently piece together the complex links in chemistry and biology that emerged in the mid- to late Archaean to form a linkage between carbon- and iron cycles, which themselves influenced the evolution of other, less abundant elements in seawater from top to bottom. The GOE is at the centre. The direct evidence for it lies in the sudden appearance of ancient red soils at about 2.4 billion years, along with the disappearance of grains of sulfides and uranium oxides – both readily oxidized to soluble products – from riverine sandstones, which signifies significant oxygen in the atmosphere. Yet chemical changes in Precambrian marine sediments perhaps indicate that oxygen began to rise in ocean water as early as 3 billion years ago. That suggests that for half a billion years biogenic and abiogenic processes in the oceans were scavenging oxygen as fast as it could be produced so that only tiny amounts, if any, escaped into the atmosphere. Among other possible factors, oceanic methane emissions from methanogen bacteria may have consumed any atmospheric oxygen – today methane lasts only for about 9 years before reaction with oxygen forms CO2. If and when methanogens declined free oxygen would have been more likely to survive in the atmosphere.

The theme running through the review is that of changing and linked interactions between life and the inorganic world, mantle, lithosphere, hydrosphere and atmosphere that involved all available chemical elements. The dominant chemical process, as it is today, was the equilibrium between oxidation and reduction – the loss and gain of electrons among possible chemical reactions and in metabolic processes. Ironstones were formed more commonly between 3 to 2 Ga than at any time before or since, and form a substantial part of that periods sedimentary record. Their net product and that of the protracted organic-inorganic balancing act – oxygenation of the hydrosphere and atmosphere – opened the way for eukaryote organisms, their reproduction by way of the splitting and recombination of nuclear DNA and their evolutionary diversification into the animal and plant life that we know today and of which we are a part. It is possible that even a subtly different set of global processes and interactions set in motion during early evolution of a planet apparently like Earth may have led to different and even unimaginable biological outcomes in later times. The optimism of exobiologists should be tempered by this detailed review.


Mega-impacts and tectonics

Because they are fast as well as weighty, destination-Earth asteroids and comets pack quite a punch. That is because their kinetic energy is proportional to the square of their speed (at least 13 km s-1) as well as half their mass. So, even all one half a kilometre across carries an energy a hundred times the solar energy received by Earth in a year, and a great deal more when compared with geothermal heat production. Much of the focus on the effects of impact events has dwelled on the upper crust, the oceans and atmosphere. Yet they also have huge seismic effects, with a proportion of their shock effect being dissipated throughout the entire planet. One obvious consequence would be a thermal anomaly directly beneath the crater as well as some thinning of the lithosphere and body waves affecting the rest of the solid Earth.

Thermal and mechanical processes lie at the core of tectonics, so a big question has been ‘Could impacts create mantle plumes or set new tectonic processes in motion?’ There has been speculation of diverse kinds since impacts became popular following the link between the Chicxulub crater and the end-Cretaceous mass extinction, discovered in 1980. But ‘educated guesses’ have generated more hot air than clear conclusions. Much as most of us are modelling-averse, a mathematical approach is the only option in the welcome absence of any severe extraterrestrial battering to which scientists have borne witness. With refined algorithms that cover most of the nuances of projectiles and targets – conservation of mass, energy and momentum in the context of the solid Earth behaving as a viscous medium –  Craig O’Neill and colleagues at Macquairie University, Australia, and the Southwest Research Centre in Boulder, CO USA, have simulated possible tectonic outcomes during plausible bombardment scenarios during the Hadean (O’Neil, C. et al. 2017. Impact-driven subduction on the Hadean Earth. Nature Geoscience, v. 10, p. 793-797; DOI: 10.1038/NGEO3029).

It appears that truly gargantuan objects – radius >500 km – are required to stimulate sufficient thermal anomalies that would lead to mantle upwellings whose evolution might lead to subduction at their margins. One at the limit posed by lunar cratering history (~1700 km radius) could have resulted in wholesale subduction of the entire lithosphere present at the time about 4 Ma after the impact. In the Hadean, it is likely that the lithosphere would have had a roughly mantle composition, so that the density excess needed for slab descent would have been merely temperature dependent. Note: after the onset of a basalt-capped lithosphere heat flow would have needed to be below the limit at which basalt converts to eclogite at high pressures, and thus to a density greater than that of the mantle, for continuing subduction. The authors’ Hadean scenario is one of episodic subduction dependent on the projectile flux and magnitude; i.e. with an early Hadean with stop-start subduction waning to tectonic stagnation and then a restart during the Late Heavy Bombardment after 4.1 Ga. Evidence for this is clearly scanty, except for Hadean zircons, whose presence indicates differentiation of early magmas with a peak between 4.0 to 4.2 Ga, in which magnetic intensities are preserved that are roughly as predicted by the scenario.

No impacts preserved in Precambrian to Recent times suggest extraterrestrial objects with the power to induce significant changes to global tectonics.

The winter of dinosaurs’ discontent

Under the auspices of the International Ocean Discovery Program (IODP), during April and May 2016 a large team of scientists and engineers sank a 1.3 km deep drill hole into the offshore, central part of the Chicxulub impact crater, which coincided with the K-Pg mass extinction event. Over the last year work has been underway to analyse the core samples aimed at investigating every aspect of the impact and its effects. Most of the data is yet to emerge, but the team has published the results of advanced modelling of the amount of climate-affecting gases and dusts that may have been ejected (Artemieva, N. et al. 2017. Quantifying the release of climate-active gases by large meteorite imp-acts with a case study of Chicxulub. Geophysical Research Letters, v. 44; DOI: 10.1002/2017GL074879).  . From petroleum exploration in the Gulf of Mexico the impact site is known to have been underlain by about 2.5 to 3.5 km of Mesozoic sediments that include substantial amounts of limestones and evaporitic anhydrite (CaSO4) – thicknesses of each are of the order of a kilometre. The impact would inevitably have yielded huge volumes of carbon- and sulfur dioxide gases, as well as water vapour plus solid and molten ejecta. The first, of course, is a critical greenhouse gas, whereas SO2 would form sulfuric acid aerosols if it entered the stratosphere. They are known to block incoming solar radiation. So both warming and cooling influences would have been initiated by the impact. Dust-sized ejecta that lingered in the atmosphere would also have had climatic cooling effects. The questions that the study aimed to answer concerns the relative masses of each gas that would have reached more than 25 km above the Earth to have long-term, global climatic effects and whether the dominant effect on climate was warming or cooling. Both gases would have added the environmental effects of making seawater more acid.


3-D simulation of the Chicxulub crater based on gravity data (credit: Wikipedia)

Such estimates depend on a large number of factors beyond the potential mass of carbonate and sulfate source rocks. For instance: how big the asteroid was; how fast it was travelling and the angle at which it struck the Earth’s surface determine the kinetic energy involved and the impact mechanism. How that energy was distributed between atmosphere, seawater and the sedimentary sequence, together with the pressure-temperature conditions for the dissociation of calcite and anhydrite all need to be accounted for by modelling. Moreover, the computation itself becomes extremely long beyond estimates for the first second or so of the impact. Earlier estimates had been limited by computer speeds to only the first few seconds of the impact and could not allow for other than vertical impacts. The new study, by supercomputers and improved algorithms, used a likely 60° angle of impact, new data on mineral decomposition and simulated the first 15 to 30 seconds. The results suggested that 325 ± 130 Gt of sulfur and 425 ± 160 Gt CO2 were ejected, compared with earlier estimates of 40-560 Gt of sulfur and 350-3,500 Gt of CO2.  The greater proportion of sulfur release to the stratosphere pushes the model decisively towards global cooling, probably over a lengthy period – perhaps centuries. Taking dusts into account implies that visible sunlight would also have been blocked, devastating the photosynthetic base of the global food chain, in the sunlit parts of oceans as well as on land.

But we have to remember that these are the results of a theoretical model. In the same manner as this study has thrown earlier modeling into doubt, more data – and there will be a great many from the Chicxulub drill core itself – and more sophisticated computations may change the story significantly. Also, the other candidate for the mass extinction event, the flood basalt volcanism of the Deccan Traps, and its geochemical effects on the climate have yet to be factored in. The next few lines of Shakespeare’s soliloquy for  Richard III may well emerge from future work

… Made glorious summer by this sun of York;
And all the clouds that lour’d upon our house
In the deep bosom of the ocean buried …

See also: BBC News comment on 31 October 201


Shock and Er … wait a minute


Enhanced gravity map of the Chicxulub crater (credit: Wikipedia)

Michael Rampino has produced a new book (Rampino, M.R. 2017. Cataclysms: A New Geology for the Twenty-First Century. Columbia University Press; New York). As the title subtly hints, Rampino is interested in mass extinctions and impacts; indeed quite a lot more, as he lays out a hypothesis that major terrestrial upheavals may stem from gravitational changes during the Solar System’s progress around the Milky Way galaxy. Astronomers reckon that this 250 Ma orbit involves wobbling through the galactic plane and possibly varying distributions of mass – stars, gas, dust and maybe dark matter – in a 33 Ma cycle. Changing gravitational forces affecting the Solar System may possibly fling small objects such as comets and asteroids towards the Earth on a regular basis. In the 1980s and 90s Rampino and others linked mass extinctions, flood-basalt outpourings and cratering events, with a 27 Ma periodicity. So the books isn’t entirely new, though it reads pretty well.

Such ideas have been around for decades, but it all kicked off in 1980 when Luis and Walter Alvarez and co-workers published their findings of iridium anomalies  at the K-Pg boundary and suggested that this could only have arisen from a major asteroid impact. Since it coincided with the mass extinction of dinosaurs and much else besides at the end of the Cretaceous it could hardly be ignored. Indeed their chance discovery launched quite a bandwagon. The iridium-rich layer also included glass spherules, shocked mineral grains, soot and other carbon molecules –nano-scale diamonds, nanotubes and fullerenes whose structure is akin to a geodesic dome – and other geochemical anomalies. Because the Chicxulub crater off the Yucatán Peninsula of Mexico is exactly the right age and big enough to warrant a role in the K-Pg extinction, these lines of evidence have been widely adopted as the forensic smoking gun for other impacts. In the last 37 years every extinction event horizon has been scrutinized to seek such an extraterrestrial connection, with some success, except for exactly coincident big craters.

The K-Pg event is the only one that shows a clear temporal connection with a small mountain falling out of the sky, most of the others seeming to link with flood basalt events and their roughly cyclical frequency – but hence Rampino’s Shiva hypothesis that impacts may have caused the launch of mantle plumes from the core-mantle boundary. Others have used the ‘smoking gun’ components to link lesser events to a cosmic cause, the most notorious being the 2007 connection to the extinction of the North American Pleistocene megafauna and the start of the Younger Dryas return of glacial conditions. Since 1980 alternative mechanisms for producing most of the impact-connected materials have been demonstrated. It emerged in 2011 that nano-diamonds and fullerenes may form in a candle flame and their global distribution could be due to forest fires. And now it seems that shocked mineral grains can form during a lightning strike (Chen, J. et al. 2017. Generation of shock lamellae and melting in rocks by lightning-induced shock waves and electrical heating. Geophysical Research Letters, v. 44, p. 8757-8768; doi:10.1002/2017GL073843). Shocked or not, quartz and feldspar grains are resistant enough to be redistributed into sediments. Although platinum-group metals, such as iridium, are likely to be mainly locked away in Earth’s core, some volcanic exhalations and many flood basalts – especially those with high titanium contents – significantly are enriched in them. So even the Alvarez’s evidence for a K-Pg impact has an alternative explanation. Rampino is to be credited for acknowledging that in his book.

An awful lot of ideas about rare yet dreadful events in the biosphere depend, like many criminal cases, on the ‘weight of evidence’ and defy absolute proof. The evidence generally permits alternatives, such the cunning Verneshot hypothesis for the extinction-flood basalt connection supported by one of the founders of plate tectonics, W. Jason Morgan. As regards The K-Pg extinction, it is certain that a very large mass did fall on Chicxulub at the time of the mass extinction, whereas the Deccan flood basalts span a million years or so either side. But the jury is out on whether either or both did the deed. For other events of this scale and larger ones the money is on internal origins. As for Rampino’s galactic hypothesis, the statistics are decidedly dodgy, but chasing down more forensics is definitely on the cards.

English: From source; an animation showing the...

Animation showing the Chicxulub Crater impact. ( credit: University of Arizona, Space Imagery Center)

Wildfires and climate at the K-Pg boundary

It is now certain that the Cretaceous-Palaeogene boundary 66 Ma ago coincided with the impact of a ~10 km diameter asteroid that produced the infamous Chicxulub crater north of Mexico’s Yucatán peninsula. Whether or not this was the trigger for the mass extinction of marine and terrestrial fauna and flora – the flood basalts of the Deccan Traps are still very much in the frame – the worldwide ejecta layer from Chicxulub coincides exactly with the boundary that separates the Mesozoic and Cenozoic Eras. As well as shocked quartz grains, anomalously high iridium concentrations and glass spherules the boundary layer contains abundant elemental carbon, which has been widely ascribed to soot released by vegetation that went up in flames on a massive scale. Atmospheric oxygen levels in the late Cretaceous were a little lower than those at present, or so recent estimates from carbon isotopes in Mesozoic to Recent ambers suggest (Tappert, R. et al. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochimica et Cosmochimica Acta, v. 121, p. 240-262,) – other estimates put the level substantially above that in modern air. Whatever, global wildfires occurred within the time taken for the Chicxulub ejecta to settle from the atmosphere; probably a few years. It has been estimated that about 700 billion tonnes of soot were laid down, suggesting that most of the Cretaceous terrestrial biomass and even a high proportion of that in soils literally went up in smoke.

Charles Bardeen and colleagues at the University of Colorado, Boulder, have modelled the climatic and chemical effects of this aspect of the catastrophe (Bardeen, C.G. et al. 2017. On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences; doi:10.1073/pnas.1708980114). Despite the associated release of massive amounts of CO2 and water vapour by both the burning and the impact into seawater, giving increased impetus to the greenhouse effect, the study suggests that fine-grained soot would have lingered as an all enveloping pall in the stratosphere. Sunlight would have been blocked for over a year so that no photosynthesis would have been possible on land or in the upper ocean, the temperatures of the continent and ocean surfaces would have dropped by as much as 28 and 11 °C respectively to cause freezing temperatures at mid-latitudes. Moreover, absorption of solar radiation by the stratospheric soot layer would have increased the temperature of the upper atmosphere by several hundred degrees to destroy the ozone layer. Consequently, once the soot cleared the surface would have had a high ultraviolet irradiation for around a year.

The main implication of the modelling is a collapse in both green terrestrial vegetation and oceanic phytoplankton; most of the food chain would have been absent for long enough to wipe out those animals that depended on it entirely. While an enhanced greenhouse effect and increased acidification of the upper ocean through CO2 emissions by the Deccan flood volcanism would have placed gradually increasing and perhaps episodic stresses on the biosphere, the outcome of the Chicxulub impact would have been immediate and terrible.

More on mass extinctions and impacts here and here

Steam-bath Earth

The Earth’s mantle probably contained a significant amount of water from the start. Its earliest history was one of intense bombardment, including the impact that formed the Moon. Together with the conversion of gravitational potential energy to heat while the core was settling out from the mantle, impacts would have kept its overall temperature high enough to prevent water vapour from condensing on the surface until such heat input ceased and heat loss by radiation allowed the surface rapidly to cool. The atmosphere would have been rich in water vapour. Evidence from zircons that are the earliest tangible materials yet recovered hint at the formation of Zr-rich magmas – probably granitic in the broad sense – about 100 Ma after the Moon-forming event (see EPN July 2001: Zircons’ window on the Hadean). Yet no trace of substantial granitic rocks that old have ever been found.

Don Baker and Kassandra Sofonio of McGill University in Montreal, Canada have considered processes other than partial melting or fractional crystallisation that may have been possible during the earliest Hadean. In particular they have looked at one thought once to be a contender in the genesis of granite and latterly sidelined (Baker, D.R. & Sofonio, K. 2017. A metasomatic mechanism for the formation of Earth’s earliest evolved crust. Earth and Planetary Science Letters, v. 463, p. 48-55; ). They heated powdered artificial samples that chemically resembled the Earth’s original silicate mantle in sealed double capsules – an inner part containing the silicate powder and an outer one containing water. The capsules were held at around 727°C for a time and then quenched. The outer part of each capsule was found to be a glass of roughly granite composition. The experimental design ensured that superheated water diffused across the inner-outer capsule wall. So the ‘granite’ must have formed by a metasomatic process – essentially preferential solution of its component elements in supercritical water – the experimental temperature being insufficient to partially melt the ultramafic charge in the inner capsule.

Baker and Sofonio conclude that degassing of this metasomatic fluid – silicate-rich ‘steam’ – may have produced substantial masses of sialic crust on the Earth’s surface. Removal of material produced in such a manner would also have extracted trace elements with an affinity for granite from the early mantle – so-called incompatible elements. The subsequent recycling of such granitic blobs back into the mantle may explain geochemical signs in >500 Ma younger Archaean crust – produced by ‘normal’ igneous processes – of incompatible-element enriched reservoirs in the Early mantle.

A ‘recipe’ for Earth’s accretion, without water

The Earth continues to collect meteorites, the vast majority of which are about as old as our planet; indeed many are slightly older. So it has long been thought that Earth originally formed by gravitational accretion when the parental bodies of meteorites were much more abundant and evenly distributed. Meteorites fall in several classes, metallic (irons) and several kinds that contain silicate minerals, some with a metallic component (stony irons) others without, some with blebs or chondrules of once molten material (chondrites) and others that do not (achondrites), and more subtle divisions among these general groups. In the latter half of the 20th century geochemists and cosmochemists became able to compare the chemical characteristics of different meteorite classes with that of the Sun –from its radiation spectrum – and those of different terrestrial rocks – from direct analysis. The relative proportions of elements in chondrites turned out to match those in the Sun – inherited from the gas nebula from which it formed – better than did other classes. The best match with this primitive composition turned out to be the chemistry of carbonaceous chondrites that contain volatile organic molecules and water as well as silicates and sulfides. The average chemistry of one sub-class of carbonaceous chondrites (C1) has been chosen as a ‘standard of standards’ against which the composition of terrestrial rocks are compared in order that they can be assessed in terms of their formative processes relative to one another. For a while carbonaceous chondrites were reckoned to have formed the bulk of the Earth through homogeneous accretion: that is until analyses became more precise at increasingly lower concentrations. This view has shifted …

Geochemistry is a complex business(!), bearing in mind that rocks that can be analysed today predominantly come from the tiny proportion of Earth that constitutes the crust. The igneous rocks at the centre of wrangling how the whole Earth has evolved formed through a host of processes in the mantle and deep crust, which have operated since the Earth formed as a chemical system. To work out the composition of the primary source of crustal igneous rocks, the mantle, involves complex back calculations and modelling. It turns out that there may be several different kinds of mantle. To make matters worse, those mantle processes have probably changed considerably from time to time. To work back to the original formative processes for the planet itself faces the more recent discovery that different meteorite classes formed in different ways, different distances from the Sun and at different times in the early evolution of the pre-Solar nebula. Thankfully, some generalities about chemical evolution and the origin of the Earth can be traced using different isotopes of a growing suite of elements. For instance, lead isotopes have revealed when the Moon formed from Earth by a giant impact, and tungsten isotopes narrow-down the period when the Earth first accreted. Incidentally, the latest ideas on accretion involve a series of ‘embryo’ planets between the Moon and Mars in size.

An example of an E-type Chondrite (from the Ab...

An example of an enstatite chondrite (from the Abee fall) in the Gallery of Minerals at the Royal Ontario Museum. (Photo credit: Wikipedia)

Calculating from a compendium of isotopic data from various types of meteorite and terrestrial materials, Nicolas Dauphas of the University of Chicago has convincingly returned attention to a model of heterogeneous accretion of protoplanetary materials from different regions of the pre-Solar nebula (Dauphas, N. 2017. The isotopic nature of the Earth’s accreting material through time. Nature, v. 541, p. 521-524; doi:10.1038/nature20830). His work suggests that the first 60% of Earth’s accretion involved materials that were a mixture of meteorite types, half being a type known as enstatite chondrites. These meteorites are dry and contain grains of metallic iron-nickel alloy and iron sulfides set in predominant MgSiO3 the pyroxene enstatite. The Earth’s remaining bulk accumulated almost purely from enstatite-chondrite material. A second paper in the same issue of Nature (Fischer-Gödde, M. & Kleine, T. 2017. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature, v. 541, p. 525-527; doi:10.1038/nature21045) reinforces the notion that the final addition was purely enstatite chondrite.

This is likely to cause quite a stir: surface rocks are nothing like enstatite chondrite and nor are rocks brought up from the upper mantle by volcanic activity or whose composition has been back-calculated from that of surface lavas; and where did the Earth’s water at the surface and in the mantle come from? It is difficult to escape the implication of a mantle dominated by enstatite chondrite From Dauphas’s analysis, for lots of other evidence from Earth materials seem to rule it out. One ‘escape route’ is that the enstatite chondrites that survived planetary accretion, which only make up 2% of museum collections, have somehow been changed during later times.  The dryness of enstatite chondrites and the lack of evidence for a late veneer of ‘moist’ carbonaceous chondrite in these analyses cuts down the options for delivery of water, the most vital component of the bulk Earth and its surface.  Could moister meteorites have contributed to the first 60% of accretion, or was  post-accretion cometary delivery to the surface able to be mixed in to the deep mantle? Nature’s News & Views reviewer, Richard Carlson of the Carnegie Institution for Science in Washington DC, offers what may be a grim outlook for professional meteoriticists: that perhaps “the meteorites in our collection are not particularly good examples of Earth’s building blocks” (Carlson, R.W. 2017. Earth’s building blocks. Nature, v. 541, p. 468-470; doi:10.1038/541468a).

Animation of how the Solar System may have formed.

K-T (K-Pg) boundary impact probed

One of the most eagerly followed ocean-floor drilling projects has just released some results. Its target is 46 km radially away from the centre of the geophysical anomaly associated with the Chixculub impact structure just to the north of Mexico’s Yucatan Peninsula. In the case of large lunar impact craters the centre is often surrounded by a ring of peaks. Modelling suggests such features are produced by the deep penetration of immense seismic shock waves. In the first minute these excavate and fling out debris to leave a cavity penetrating deep into the crust. Within three minutes the cavity walls collapse inwards creating a rebound superficially similar to the drop flung upwards after an object is dropped in liquid. This, in turn, collapses outwards to emplace smashed and partially melted deep crustal material on top of what were once surface materials, creating a crustal inversion beneath a mountainous ring of Himalayan dimensions that surrounds a by-now shallow crater. That is the story modelled from what is known about well-studied, big craters on the Moon and Mercury. Chixculub is different because the impact was into the sea and involved debris-charged tsunamis that finally plastered the actual impact scar with sediments. The drilling was funded for several reasons, some palaeontological others relating to the testing of theories of impact processes and their products. Chixculub is probably the only intact impact crater on Earth, and the first reports of findings are in the second category (Morgan, J.V. and 37 others 2016. The formation of peak rings in large impact craters. Science, v. 354, p. 878-882; doi: 10.1126/science.aah6561).

English: K/T extinction event theory. An artis...

Artist’s depiction of the Chicxulub impact 65 million years ago that many scientists say is the most direct cause of the dinosaurs’ disappearance (credit: Wikipedia)

The drill core, reaching down to about 1.3 km below the sea floor penetrates post-impact Cenozoic sediments into a 100 m thick zone of breccias containing fragments of impact melt rock, probably the infill of the central crater immediately following the first few minutes of impact. Beneath that are coarse grained granites representing the middle continental crust from original depths around 10 km. The granite is intensely fractured and riven by dykes and pods of impact melt, and contains intensely shocked grains that typify impacts that produce a transient pressure of ~60 GPa – around six hundred thousand times atmospheric pressure. From seismic reflection surveys this crustal material overlies as yet un-drilled Mesozoic sedimentary rocks. Its density is significantly less than that of unshocked granite – averaging 2.4 compared with 2.6 g cm3. So it is probably filled with microfractures and sufficiently permeable for water to have penetrated once the impact site had cooled. This poses the question, yet to be addressed in print, of whether or not this near-surface layer became colonised by microorganisms in the aftermath (Barton, P. 2016. Revealing the dynamics of a large impact. Science, v. 354, p. 836-837). That is, was the surrounding ocean sterilised at the time of the K-T (K-Pg) mass extinction?; an issue whose resolution is awaited with bated breath by the palaeobiology audience. OK; so theory about the physical process of cratering has been validated to some extent, but will later results be more interesting, outside the planetary sciences community?

Read more about impacts here and mass extinctions here .

Lunar gravity and the Orientale Basin

Mapping the Earth’s gravitational field once involved painstaking use of highly sensitive gravimeters at points on the surface, then interpolating values in the spaces between. How revealing maps produced in this way are depends on the spacing of the field sites, and that is still highly variable because of accessibility and how much money is available to carry out such a task in different areas. Space-borne methods have been around for decades.  One uses radar measurement of sea-surface height, which depends on the underlying gravitational field. The other deploys two satellites in tandem orbits (the US-German Aerospace Centre Gravity Recovery and Climate Experiment – GRACE), the distance between them – measureable using radar –  varying along each orbit according to variations in the Earth’s gravity. Respectively, these methods have produced gravity maps of the ocean floor and estimates melting rates of ice caps and the amount of groundwater extraction from sedimentary basins. The problem with GRACE is that satellites need to avoid the Earth’s atmosphere by using orbits hundreds of kilometres above the surface, otherwise drag soon brings them down. So the resolution of the gravity maps that it produces is too coarse (about 270 km) for most useful applications. If a world has no atmosphere, however, there is no such limit on orbital altitude, other than surface topography. A similar tandem-system to GRACE has been orbiting the Moon at 55 km since 2011. The Gravity Recovery and Interior Laboratory (GRAIL) mission has produced full coverage of lunar gravity at a resolution of 20 km. In a later phase of operation, GRAIL has been skimming the tops of the highest mountains on the Moon at an average altitude of 6 km; close enough to give a resolution of between 3 and 5 km.

Lunar Orbiter 4 image of the Mare Orientale ba...

The Mare Orientale basin on the Moon. (credit: Wikipedia)

This capacity has given a completely new take on lunar near-surface structure, about as good as that provided by conventional gravity mapping for parts of the Earth. The first pay-off has been for the best preserved major impact feature on the lunar surface: the Orientale basin that formed at the end of the Late Heavy Bombardment of the Solar System, around 3.8 billion years ago. The ~400 km diameter Orientale basin is at the western border of the moon’s disk visible from Earth, and looks like a gigantic bullseye. Its central crater, floored by dark-coloured basalt melted from the mantle by the power of the impact, is surrounded by three concentric rings extending to 900 km across; a feature seen partially preserved around even larger lunar maria. The structure of such giant ringed basins – also seen on other bodies in the Solar System – has been something of a puzzle since their first recognition on the Moon. A popular view has been that they are akin to the rippling produced dropping a pebble in water, albeit preserved in now solid rock.

The Orientale basin superimposed by the strength of the moon's gravity field. Areas shaded in red have higher gravity, while areas in blue have the least gravity. (Credit: Ernest Wright, NASA/GSFC Scientific Visualization Studio)

The Orientale basin superimposed by the strength of the moon’s gravity field. Areas shaded in red have higher gravity, while areas in blue have the least gravity. (Credit: Ernest Wright, NASA/GSFC Scientific Visualization Studio)

GRAIL has allowed planetary scientists to model a detailed cross section through the lunar crust (Zuber, M.T. and 27 others, 2016. Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, v. 354, p. 438-441). The 40 km thick anorthositic (feldspar-rich) lunar crust has vanished from beneath the central crater, which is above a great upwards bulge of the lunar mantle mantled by about 2 km of mare basalts. The shape of the crust-mantle boundary beneath the rings shows that it has been thickened by anorthositic debris flung out by the impact. But the rings seem to be controlled by huge faults that penetrate to the mantle: signs of 2-stage gravitational collapse of the edifice produced initially by the impact.

More on planetary impacts

Impact linked to the Palaeocene-Eocene boundary event

The PalaeoceneEocene (P-E) boundary at 55.8 Ma marks the most dramatic biological changes since the mass extinction at the Cretaceous-Palaeogene boundary 10 million years earlier. They included the rapid expansions of mammals and land plants and major extinction of deep-water foraminifera.  It was a time of sudden global warming (5-10°C in 10-20 ka) superimposed on the general Cenozoic cooling from the ‘hothouse’ of the Cretaceous Period. It coincided with a decrease in the proportion of 13C in marine carbonates.  Because photosynthesis, the source of organic carbon, favours light 12C, such a negative δ13C “spike” is generally ascribed to an unusually high release of organic carbon to the atmosphere.  The end-Palaeocene warming may have resulted from a massive release of methane from gas-hydrate buried in shallow seafloor sediments. But another process may yield such a signature; massive burning of organic material at the land surface. Since its discovery, the P-E thermal maximum has been likened to the situation that we may face should CO2 emissions from fossil-fuel burning continue to rise without control. Unsurprisingly, funds are more easily available for research on this topic than, say, ‘Snowball Earth’ events.

Climate change during the last 65 million year...

Climate change during the last 65 million years. The Paleocene–Eocene Thermal Maximum is labelled PETM. (Photo credit: Wikipedia)

Three seafloor sediment cores off the east coast of the US that include the P-E boundary have been found to contain evidence for an impact that occurred at the time of the δ13C “spike” (Schaller, M.F. et al. 2016. Impact ejecta at the Paleocene-Eocene boundary. Science, v. 354, p. 225-229). The evidence is dominated by tiny spherules and tear-shaped blobs of glass, some of which contain tiny crystals of shocked and high-temperature forms of silica (SiO2). These form part of the suite of features that have been used to prove the influence of asteroid impacts. Two other onshore sites have yielded iridium anomalies at the boundary, so it does look like there was an impact at the time. The question is, was it large enough either to cause vast amounts of methane to blurt out from shall-water gas hydrates or set the biosphere in fire? Two craters whose age approximates that of the P-E boundary are known, one in Texas the other in Jordan, with diameters of 12 and 5 km respectively; far too small to have had any global effect. So either a suitably substantial crater of the right age is hidden somewhere by younger sediments or the association is coincidental – the impact that created the Texan crater could conceivably have flung glassy ejecta to the area of the three seafloor drilling sites.

Almost coinciding with the spherule-based paper’s publication another stole its potential thunder. Researchers at Southampton University used a mathematical model to investigate how a methane release event might have unfolded (Minshull, T.A. et al. 2016. Mechanistic insights into a hydrate contribution to the Paleocene-Eocene carbon cycle perturbation from coupled thermohydraulic simulations. Geophysical Research Letters, v. 43, p. 8637-8644, DOI: 10.1002/2016GL069676). Their findings challenge the hypothesized role of methane hydrates in causing the sudden warming at the P-E boundary. But that leaves out the biosphere burning, which probably would have neded a truly spectacular impact.

More on mechanisms for ancient climate change