Category Archives: Climate change and palaeoclimatology

Salt and Earth’s atmosphere

It is widely known that glacial ice contains a record of Earth’s changing atmospheric composition in the form of bubbles trapped when the ice formed. That is fine for investigations going back about a million years, in particular those that deal with past climate change. Obviously going back to the composition of air tens or hundreds of million years ago cannot use such a handy, direct source of data, but has relied on a range of indirect proxies. These include the number of pores or stomata on fossil plant leaves for CO2, variations in sulfur isotopes for oxygen content and so on. Variation over time of the atmosphere’s content of oxygen has vexed geoscientists a great deal, partly because it has probably been tied to biological evolution: forming by some kind of oxygenic photosynthesis and being essential for the rise to dominance of eukaryotic animals such as ourselves. Its presence or absence also has had a large bearing on weathering and the associated dissolution or precipitation of a variety of elements, predominantly iron. Despite progressively more clever proxies to indicate the presence of oxygen, and intricate geochemical theory through which its former concentration can be modelled, the lack of an opportunity to calibrate any of the models has been a source of deep frustration and acrimony among researchers.

Yet as is often said, there are more ways of getting rid of cats than drowning them in butter. The search has been on for materials that trap air in much the same way as does ice, and one popular, if elusive target has been the bubbles in crystals of evaporite minerals. The trouble is that most halite deposits formed by precipitation of NaCl from highly concentrated brines in evaporating lakes or restricted marine inlets. As a result the bubbles contain liquids that do a grand job of preserving aqueous geochemistry but leave a lot of doubt as regards the provenance of gases trapped within them. For that to be a sample of air rather than gases once dissolved in trapped liquid, the salt needs to have crystallized above the water surface. That may be possible if salt forms from brines so dense that crystals are able to float, or perhaps where minerals such as gypsum form as soil moisture is drawn upwards by capillary action to form ‘desert roses’. A multinational team, led by Nigel Blamey of Brock University in Canada, has published results from Neoproterozoic halite whose chevron-like crystals suggest subaerial formation (Blamey, N.J.F. and 7 others, 2016. Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology, v. 44, p. 651-654). Multiple analyses of five halite samples from an ~815 Ma-old horizon in a drill core from the Neoproterozoic Canning Basin of Western Australia contained about 11% by volume of oxygen, compared with 25% from Cretaceous salt from China, 20% of late-Miocene age from Italy, and 19 to 22% from samples modern salt of the same type.

Salar de Atacama salt flat in the Chilean puna

Evaporite salts in the Salar de Atacama Chile (credit: Wikipedia)

Although the Neoproterozoic result is only about half that present in modern air, it contradicts results that stem from proxy approaches, which suggest a significant rise in atmospheric oxygenation from 2 to about 18% during the younger Cryogenian and Ediacaran Periods of the Neoproterozoic, when marine animal life made explosive developments at the time of repeated Snowball Earth events. Whether or not this approach can be extended back to the Great Oxygenation Event at around 2.3 Ga ago and before depends on finding evaporite minerals that fit stringent criteria for having formed at the surface: older deposits are known even from the Archaean.

Bury the beast in basalt

Global warming cannot simply be reversed by turning off the tap of fossil fuel burning. Two centuries’ worth of accumulated anthropogenic carbon dioxide would continue to trap solar energy, even supposing that an immediate shutdown of emissions was feasible; a pure fantasy for any kind of society hooked on coal, oil and gas. It takes too long for natural processes to download CO2 from the atmosphere into oceans, living organic matter or, ultimately, back once more into geological storage. In the carbon cycle, it has been estimated that an individual molecule of the gas returns to one of these ‘sinks’ in about 30 to 95 years. But that is going on all the time for both natural and anthropogenic emissions. Despite the fact that annual human emissions are at present only about 4.5 % of the amount emitted by natural processes, clearly the drawdown processes in the carbon cycle are incapable of balancing them, at present. Currently the anthropogenic excess of CO2 over that in the pre-industrial atmosphere is more than 100 parts per million achieved in only 250 years or so. The record of natural CO2 levels measured in cores through polar ice caps suggests that natural processes would take between 5 to 20 thousand years to achieve a reduction of that amount.
Whatever happens as regards international pledges to reduce emissions, such as those reported by the Paris Agreement, so called ‘net-zero emissions’ leave the planet still a lot warmer than it would be in the ‘natural course of things’. This is why actively attempting to reduce atmospheric carbon dioxide may be the most important thing on the real agenda. The means of carbon sequestration that is most widely touted is pumping emissions from fossil fuel burning into deep geological storage (carbon capture and storage or CCS), but oddly that did not figure in the Paris Agreement, as I mentioned in EPN December 2015. In that post I noted that CCS promised by the actual emitters was not making much progress: a cost of US$50 to 100 per tonne sequestered makes most fossil fuel power stations unprofitable. Last week CCS hit the worlds headlines through reports that an Icelandic initiative to explore a permanent, leak-proof approach had made what appears to be a major breakthrough (Matter, J.M. and 17 others, 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, v. 352, p. 1312-1314). EPN January 2009 discussed the method that has now been tested in Iceland. It stems from the common observation that some of the minerals in mafic and ultramafic igneous rocks tend to breakdown in the presence of carbon dioxide dissolved in slightly acid water. The minerals are olivine ([Fe,Mg]2SiO4)] and pyroxene ([Fe,Mg]CaSi2O6), from whose breakdown the elements calcium and magnesium combine with CO2 to form carbonates.
Iceland is not short of basalts, being on the axial ridge of the North Atlantic. Surprisingly for a country that uses geothermal power to generate electricity it is not short of carbon dioxide either, as the hot steam contains large quantities of it. In 2012 the CarbFix experiment began to inject a 2 km deep basalt flow with 220 t of geothermal CO2 ‘spiked’ with 14C to check where the gas had ended up This was in two phases, each about 3 months long. After 18 months the pump that extracted groundwater directly from the lave flow for continuous monitoring of changes in the tracer and pH broke down. The fault was due to a build up of carbonate – a cause for astonishment and rapid evaluation of the data gathered. In just 18 months 95% of the 14C in the injected CO2 had been taken up by carbonation reactions. A similar injection experiment into the Snake River flood basalts in Washington State, USA, is said to have achieved similar results (not yet published). A test would be to drill core from the target flow to see if any carbonates containing the radioactive tracer filled either vesicles of cracks in the rock – some press reports have shown Icelandic basalt cores that contain carbonates, but no evidence that they contain the tracer .
Although this seems a much more beneficial use of well-injection than fracking, the problem is essentially the same as reinjection of carbon dioxide into old oil and gas fields; the high cost. Alternatives might be to spread basaltic or ultramafic gravel over large areas so that it reacts with CO2 dissolved in rainwater or to lay bear fresh rocks of that kind by removal of soil cover.

Kintisch, E., 2016. Underground injections turn carbon dioxide to stone. Science, v. 352, p. 1262-1263.

In a first, Iceland power plant turns carbon emissions to stone. Phys.org

Focus on glaciation…and avoid physics envy

About 1.3 billion years ago two small black holes, each weighing in at about 30 solar masses, ran into one another and fused. At that time Earthly life forms had neither mouths nor anuses, nor even a nervous system, and they were not much bigger than a sand grain. The distant collision involved  rapid acceleration of considerable masses. A century ago Albert Einstein predicted that the movement of any matter in the universe should perturb space-time in a wave-like form that travels at the same speed as light. Well, he was right for, at 9:50:45 universal time on 14 September 2015, four exquisitely engineered mirrors deployed in the two set-ups of a Laser Interferometer Gravitational-Wave Observatory (LIGO) in Louisiana and Washington states in the US minutely shuddered, first in the Deep South and 0.007 seconds later in the Pacific Northwest. The signal lasted 0.25 seconds and, when rendered as sound, comprised a sort of chirrup starting at 35 Hz and rising to 250 Hz before an abrupt end. Five months later, and silent internationally shared theoretical verification, the story was released to the back slapping, stamping and pawing the air that we have come to expect from clever, ambitious and persuasive people who have spent a great deal of our money and have something to show for it. So now we know that the universe is probably throbbing – albeit very, very, very quietly – with gravitational waves generated by every single motion that has taken place in the whole of ‘recorded’ history since the Big Bang. Indeed, it is claimed, LIGO-like machines may one day detect the big wave itself if, that is, it hasn’t already passed through the solar system. Recall, 13.7 billion years ago the Big Bang didn’t take much longer than this comparatively mundane collision at 1.3 Ga . Physicists are going to have a lot to ponder on now they have a lever to get yet greater funds. To put all this in perspective, the detected chirrup had been traveling for 1.3 Ga, and so too must the actual place in the universe where it took place: I guess we will never know where it is now or what damage or otherwise may have been visited upon planetary systems in its vicinity, if indeed it had even the slightest recognisable geological or ecological consequence.

So, onto the mundane world of glaciology and climate change.

Tibet is the third greatest repository of glacial ice on the surface of the Earth’s continents. It is the focus of one of the planet’s greatest climatic system, the South Asian. While much of the Plateau hasn’t borne glaciers continuously throughout even the last glacial cycle, it is becoming clear that its western margin has remained cold enough to retain ice throughout an even longer period. In the Kunlun mountains is a 200 km2 ice cap known as the Guliya. At the start of detailed glacial stratigraphic ventures in 1990s, focused mainly on Greenland and Antarctica, analysis of a core from the Guliya ice cap yielded dates extending back to 130 ka, before the start if the last interglacial. This section lies above ice that at the time could not be dated reliably other than to show that it may be older than about 750 ka. This stemmed from its lack of the radioactive 36Cl formed, similarly to 14C, by cosmic-ray interactions with stable 35Cl in atmospheric salt aerosols: such cosmogenic chlorine can be used for radiometric dating of ice younger than 750 ka.

A News Feature in the 29 January issue of Science (Qiu, J. 2016. Tibet’s primeval ice. Science, v. 351, p. 436-439) focused on the preliminary results of an expedition, led by Yao Tandong of the Institute of Tibetan Plateau Research, Beijing and Lonnie Thompson of Ohio State University, Columbus, to drill a further five ice cores at Guliya in September 2015, one of which penetrated ove 300 m of glacial ice. It is now possible to date ice layers back to a million years using argon isotopes. Combined with stable isotope and other measurements through the cores, the dating should provide a huge amount of new information on the evolution of the monsoon, which is currently understood only vaguely. Such information would sharpen models of how the monsoon system works and even hint at how it might change during a period of anthropogenic warming. An estimated 1.4 billion people – a fifth of humanity – who live in the Indian subcontinent, China and SE Asia depend for their food-production on the monsoon.

With less humanitarian urgency but equally fascinating is the discovery that, as well as sea-ice, the central Arctic Ocean once hosted vast ice shelves during the last-but-one glacial episode (Jakobsson, M. and 24 others 2016. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciations. Nature Communications, v. 7, doi:10.1038/ncomms10365. Clues emerged from multibeam sonar bathymetry that created detailed images of topography on the floor of the Arctic Ocean. These revealed sets of parallel ridges on the shallowest parts of the polar basin, thought to have formed when moving ice shelves grounded. The depths of the grooved areas indicate ice thicknesses up to and exceeding 1 km. The grooves look very similar to the large-scale lineaments that formed on the surface of the Canadian Shield when the Laurentide ice sheet ground its way from zones of glacial accumulation. Grounding of an ice shelf would have resulted in its thickening in the upflow direction as a result of plastic deformation of the ice, tending to lock the flow and direct ice escape over the deeper parts of the Arctic basin.

Antarctic Ice Shelf

Antarctic Ice Shelf (credit: Wikipedia)

Back-tracking the grooves defines the ice shelf’s source regions in the northern Canadian islands, north Scandinavia and the lowlands of eastern Siberia as well as regional flow patterns and the extent of floating continental ice. The last is a major surprise: at over 4 million km2 it was four times larger than all modern Antarctic ice shelves. The ice moved to ‘escape’ to the North Atlantic Ocean through the Fram Strait between East Greenland and Svalbard (Spitzbergen). Dating sediment stratigraphy in the grooved areas using magnetic and fossil data shows that the ice shelves existed between 160 and 140 ka during the penultimate glacial maximum. For such a mass of glacial ice to be expelled into the Arctic Ocean implies that a great deal more snow fell on its fringes then than during the last glacial maximum. Another possibility is that the huge mass of floating ice regulated the salinity and density of the upper Atlantic in a different way from the periodic iceberg ‘armadas’ that characterized the last glacial epoch and help account for a whole number of sudden warming and cooling events.

Domack, E. 2016. A great Arctic ice shelf. Nature, v. 530, p. 163-164.

Carbon emissions: It’s an ill wind…

The original saying emerged in Shakespeare’s Henry IV Part 2 (Act 5, Scene 3) during a jocular exchange when Ancient Pistol brings news from Court to Sir John Falstaff and other old codgers at dinner in Gloucestershire. Falstaff: ‘What wind blew you hither, Pistol?’ Pistol: ‘Not the ill wind which blows no man to good’. In the present context it seems anthropogenic CO2 emissions have staved off the otherwise inevitable launch of another glacial epoch. Climate-change deniers will no doubt pounce on this in the manner of a leopard seizing a tasty young monkey.

Auyuittuq National Park: Penny Ice Cap

Penny Ice Cap on Baffin Island ( credit: Wikipedia)

Climatologists at the Institute for Climate Impact Research in Potsdam, Germany, Potsdam University and the Santa Fe Institute in New Mexico, USA set out to develop a means for predicting the onset of ice ages (Ganopolski, A. et al. 2016. Critical insolation-CO2 relation for diagnosing past and future glacial inception. Nature, v. 529, p. 200-203) Many researchers have concluded from the oxygen isotope data in marine sediments, which tracks changes in the volume of glacial ice on land, that the end of previous interglacial periods by inception of prolonged climatic cooling may be attributed to reduction of solar heating in summer at high northern latitudes. This conclusion stems from Milankovic’s predictions from the Earth’s astronomically controlled orbital parameters and fits most of previous interglacial to glacial transitions. But summer insolation at 65°N is now more or less at one of these minima, with no signs of drastic global cooling; rather the opposite, as part of 7 thousand years of constant global sea level during the Holocene interglacial.

The latest supercomputer model of the Earth System (CLIMBER-2) has successfully ‘predicted’ the last eight ice ages from astronomical and other data derived from a variety of climate proxies. It also forecasts the next to have already begun, if atmospheric CO2 concentration was 240 parts per million; the level during earlier interglacials most similar to that in which we live. But the pre-industrial level was 280 ppm and the model suggests that would have put off the return of huge ice caps in the Northern Hemisphere for another 50 thousand years – partly because the present insolation minimum is not deep enough to launch a new ice age with that CO2 concentration – making the Holocene likely to be by far the longest interglacial since ice-age cycles began about 2.5 Ma ago. Based on current, industrially contaminated CO2 levels and a rapid curtailment of carbon emissions the model suggests no return to full glacial conditions within the next 100 ka and possibly longer; a consequence of the sluggishness of natural processes that draw-down CO2 from the atmosphere.

English: Ice age Earth at glacial maximum. Bas...

Simulation of the Earth at a glacial maximum. (Photo credit: Wikipedia)

So, does this indicate that unwittingly the Industrial Revolution and subsequent growth in the use of fossil fuels tipped the balance away from global cooling that would eventually have made vast tracts of both hemispheres uninhabitable? At first sight, that’s the way it looks. But the atmospheric carbon content of the 17th century would have resulted in much the same long drawn out Holocene interglacial; an unprecedented skipping of an ice age in the period covering most of the history of human evolution. This raises a question first posed by Bill Ruddiman in 2003: did human agriculture and associated CO2 emission begin the destabilisation of the Earth system shortly after Holocene warming and human ingenuity made farming and herding possible since about 10 thousand years ago?

But, consider this, the CLIMBER-2 Earth System model is said to be one of ‘intermediate complexity’ which is shorthand for one that relies on the ages-old scientific method of reductionism or basing each modelled scenario on modifying one parameter at a time. Moreover, for many parameters of the Earth’s climate system – clouds, dust, the cooling effect of increased winter precipitation as snow, and much else – scientists are pretty much in the dark (Crucifix, M. 2016. Earth’s narrow escape from a big freeze. Nature, v. 529, p. 162-163). Indeed it is still not certain whether CO2 levels have a naturally active or passive role in glacial-interglacial cycles, or something more complex than the simple cause-effect paradigm that still dominates much of science.

Paris Agreement 2015: Carbon Capture and Storage

Anyone viewing news that covered the adoption of the Paris Agreement on climate change on 11 December 2015 would have seen clear evidence of the reality of the old saw, ‘There was dancing in the streets’. Not since the premature celebration of the landing of the Philae spacecraft on comet 67P/Churyumov–Gerasimenko 11 months before has there been such public abandonment of normal human restraint. In the case of ‘little Philae’ the object of celebration sputtered out three days after landing, albeit with the collection of some data. Paris 2015 is a great deal more important: the very health of our planet and its biosphere hangs on its successful implementation. At 32 pages long, by UN standards the document agreed to by all 196 UN Member States is pretty succinct considering everything it is supposed to convey to its signatories and the human race at large.

The Bagger 288 bucket wheel reclaimer moves from one lignite mine to another in Germany.

The Bagger 288 bucket wheel reclaimer moves from one lignite mine to another in Germany.

One central and, by most scientific criteria, the most important technology needed as a stopgap before the longed-for adoption of carbon-free energy generation does not figure in the diplomatic screed: carbon capture and storage (CCS) is not mentioned once. Indeed, only 10 Member States have included it in their pledge or ‘intended nationally determined contribution’ (INDC) – Bahrain, Canada, China, Egypt, Iran, Malawi, Norway, Saudi Arabia, South Africa and the United Arab Emirates. Only three of them are notable users of coal-fired power stations for which CCS is most urgent. An article in the January 2016 issue of Scientific American offers an explanation of what seems to be a certain diplomatic timidity about this highly publicized stop-gap measure (Biello, D. 2016. The carbon capture fallacy. Scientific American, v. 314(1) 55-61). David Biello emphasizes the urgency of CCS from more industries than fossil fuel power plants, cement manufacture being a an example. He focuses on the economics and logistics of one of very few CCS facilities that may be on track for commissioning (33 have been shut down or cancelled worldwide since 2010).

The Kemper power station in Mississippi, USA is the most advanced in the US, as it has to be to burn the strip-mined, wet, brown coal or lignite that is its sole fuel. The chemistry it deploys is quite simple but technologically complex and expensive. So Kemper survives only because it aims to sell the captured CO2 to a petroleum company so that it can be pumped into oil fields to increase dwindling production. However, its extraction costs US$1.50 per tonne, while naturally occurring, underground CO2 costs US$0.50 to pump out. Moreover, Kemper’s power output at US$11 000 per kW of generating capacity is three times more expensive than that for a typical coal-fired boiler. Mississippi Power is lucky, in that it only needs to pipe the gas 100 km to its ‘partner’ oil field; a pretty small one producing about 5 000 barrels per day. Some coal plants are near oil fields, but the majority are not. To cap it all, only about a third of the CO2 production is likely to remain in long-term underground storage.

Because Kemper has, predictably, hit the financial buffers (almost US$4 billion over budget) to avoid bankruptcy it has raised electricity prices to its customers by 18%. Without the projected revenue from its partnered oil field it would go belly up. Even in the happy event of financial break-even, in carbon terms it would be subsidising the oilfield to produce…CO2! But the sting in the tail of Biello’s account of this ‘flagship’ project is that the plant is currently neither burning coal nor capturing carbon: it uses natural gas…

The core’s influence on geology: how does it do it?

Although no one can be sure about the details of processes in the Earth’s core what is accepted by all is that changes in core dynamics cause the geomagnetic field to change in strength and polarity, probably through some kind of physical interaction between core and deep mantle at the core-mantle boundary (CMB). Throughout the last 73 Ma and especially during the Cenozoic Era geomagnetism has been more fickle than at any time since a more or less continuous record began to be preserved in the Jurassic to Recent magnetic ‘stripes’ of the world ocean floor. Moreover, they came in bursts: 5 in a million years at around 72 Ma; 10 in 4 Ma centred on 54 Ma; 17 over 3 Ma around 42 Ma; 13 in 3 Ma at ~24 Ma; 51 over a period of 12 Ma centring on 15 Ma. During the Late Jurassic and Early Cretaceous the core was similarly ‘busy’, the two time spans of frequent reversals being preceded by quiet ‘superchrons’ dominated by the same normal polarity as we have today i.e. magnetic north being roughly around the north geographic pole.

The Cenozoic history of magnetic reversals - black periods were when geomagnetic field polarity was normal and white when reversed. (credit: Wikipedia)

The Cenozoic history of magnetic reversals – black periods were when geomagnetic field polarity was normal and white when reversed. (credit: Wikipedia)

Until recently geomagnetic ‘flips’ between the two superchrons were regarded as random , perhaps suggesting chaotic behaviour at the CMB. But such a view depends on the statistical method used. A novel approach to calculating reversal frequency through time, however, shows peak-trough pairs recurring 5 times through the Cenozoic Era, approximately 13 Ma apart: maybe the chaos is illusory (Chane, J. et al. 2015. The 13 million year Cenozoic pulse of the Earth. Earth and Planetary Science Letters, v. 431, p. 256-263). So, here is a kind of yardstick to see if there may be any connection between core processes and those at the surface, which Chen of the Fujian Normal University, Fushou China and Canadian and Chinese colleagues compared with the very detailed Cenozoic oxygen-isotope (δ18O) record preserved by foraminifera in ocean-floor sediments, which is a well established proxy for changes in climate. Removing the broad trend of cooling through the Cenozoic resulted in a plot of more intricate climatic shifts that matches the geomagnetism record in both shape and timing of peak-trough pairs. It also turns out, or so the authors claim, that both measures correlate with changes in the rate of Cenozoic subduction of oceanic lithosphere (a measure of plate tectonic activity), albeit negative – peaks in magnetism and climate connecting with slowing in the pace of tectonics.

The analyses involved some complicated maths, but taken at face value the correlations beg the questions why and how? Long-term climate change contains an astronomical signal, encapsulated in the Milankovich hypothesis which has been tested again and again with little room for refutation. So is this all to do with gravitational influences in the Solar System. More exotic still is the possibility of 13 Ma cyclicity linking the Milankovich mechanism with the vaster scale of the Sun’s orbit oscillating through the disc of the Milky Way galaxy and theoretical hints of a mysterious role for dark matter in or near the galaxy. Or, is it a relationship in which climate and the magnetic field are modulated by plate tectonics through varying volcanic emissions of greenhouse gases and the deep effect of subduction on processes at the CMB respectively? To me that seems more plausible, but it is still as exceedingly complex as the maths used to reveal the correlations.

Fascinating glacial feature found on Mars

Many of the vast wastes of northern Canada and Scandinavia that were ground to a paste by ice sheets during the last glacial cycle show peculiar features that buck the general glacial striation of the Shield rocks. They are round-topped ridges that wind apparently aimlessly across the tundra. In what is now a gigantic morass, the ridges form well-drained migration routes for caribou and became favourite hunting spots for the native hunter gatherers: in Canada they are dotted with crude simulations of the human form, or inugoks, that the Innuit erected to corral game to killing grounds. Where eroded they prove to be made of sand and gravel, which has proved an economic resource in some areas lacking in building aggregate, good but small examples being found in the Scottish Midland Valley that have served development of Glasgow and Edinburgh. They were given the Gaelic name eiscir meaning ‘ridge of gravel’ (now esker) from a few examples in Ireland.

Eskers form from glacial meltwater that makes its way from surface chasms known as moulins to the very bottom of an ice sheet where water flows much in the manner of a river, except in tubes rather than channels. Where the ice base is more or less flat the tubes meander as do normal sluggish rivers, and like them the tubes deposit a proportion of the abundant sediment derived by melting glacial ice. Once the ice sheet melts and ablates away, the sediments lose the support of the tube walls and flop down to form the eponymous low ridges: the reverse of the sediment filled channels of streams that have either dried up or migrated. Eskers are one of the features that shout ‘glacial action’ with little room for prevarication.

The classic form of eskers in the Phlegra Montes  of Mars. (credit:  Figure 6 in Gallagher and Balme, 2015)

The classic form of eskers in the Phlegra Montes of Mars. (credit: Figure 6 in Gallagher and Balme, 2015)

Glacial terrains on Mars have been proposed for some odd looking surfaces, but other processes such as debris flows are equally attractive. To the astonishment of many, Martian eskers have now been spotted during systematic interpretation of the monumental archives of high-resolution orbital images of the planetary surface (Gallagher, C. & Balme, M. 2015. Eskers in a complete, wet-based glacial system in the Phlegra Montes region, Mars. Earth and Planetary Science Letters, v. 431, p. 96-109). The discovery is in a suspected glacial terrain that exhibits signs of something viscous having flowed on low ground around higher topographic features, bombardment stratigraphy suggests a remarkable young age for the terrain or about 150 Ma ago: the Amazonian. Ice and its effects are not too strange to suggest for Mars which today is pretty much frigid, except for a few suggestions of active flow of small watery streams. Eskers demand meltwater in abundance, and Gallagher and Balme attribute some of the other features in the Phlegra Montes to wet conditions. However, the eskers are a one-off, so far as they know. Consequently, rather than appealing to some climatic warm up to explain the evidence for wetness, they suggest that the flowing water tubes resulted from melting deep in the ice as a result of locally high heat flow through the Martian crust, which is a lot more plausible.

Pleistocene megafaunal extinctions – were humans to blame?

Australia and the Americas had an extremely diverse fauna of large beasts (giant wombats and kangeroos in Australia; elephants, bears, big cats, camelids, ground sloths etc in the Americas) until the last glaciation and the warming period that led into the Holocene interglacial. The majority of these megafauna species vanished suddenly during that recent period. To a lesser extent something similar happened in Eurasia, but nothing significant in Africa. Because the last glacial cycle also saw migration of efficient human hunter-gatherers to every other continent except Antarctica, many ecologists, palaeontologists and anthropologists saw a direct link between human predation and the mass extinction (see Earth-Pages of April 2012. Earlier humans had indeed spread far and wide in Eurasia before, and the crude hypothesis that the last arrivals in Australasia and the Americas devoured all the meatiest prey in three continents had some traction as a result: predation in Eurasia and Africa by earlier hominids would have made surviving prey congenitally wary of bipeds with spears. In Australia and the Americas the megafauna species would have been naive and confident in their sheer bulk, numbers, speed and, in some cases, ferocity. Other possibilities emerged, such as the introduction of viruses to which faunas had no immunity or as a result of climate change, but none of the three possibilities has gained incontrovertible proof. But the most popular, human connection has had severe knocks in the last couple of years. A fourth, that the extinctions stemmed from a comet impact proved to have little traction.

English: s were driven to extinction by and hu...

Megafauna in a late-Pleistocene landscape including woolly mammoths and rhinoceroses, horses, and cave lions with a carcass. (credit: Wikipedia)

Since the amazing success of analysing the bulk DNA debris in sea water – environmental DNA or eDNA – to look at the local diversity of marine animals, the analytical and computing techniques that made it possible have been turned to ancient terrestrial materials: soils, permafrost and glacial ice. One of the first attempts revealed mammoth and pre-Columbian horse DNA surviving in Alaskan permafrost, thanks to the herds’ copious urination and dung spreading. Several articles in the 24 July 2015 issue of Science review ancient DNA advances, including eDNA from soils that chart changes in both fauna and flora over the last glacial cycle (Pennisi, E. 2015. Lost worlds found. Science, v. 349, p. 367-369). Combined with a variety of means of dating the material that yield the ancient eDNA, an interesting picture is emerging. The soil and permafrost samples potentially express ancient ecosystems in far more detail than would fossil animals or pollens, many of which are too similar to look at the species level and in any case are dominated by the most abundant plants rather than showing those critical in the food chain.

Nunavut tundra

Plants of the Arctic tundra in Nunavut, Canada (Photo credit: Wikipedia)

The first major success in palaeoecology of this kind came with a 50-author paper using eDNA ‘bar-coding’ of permafrost from 242 sites in Siberia and Alaska IWillerslev, E. and 49 others 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, v. 506, p. 47-51. doi:10.1038/nature12921). Dividing the samples into 3 time spans – 50-25, 25-15 (last glacial maximum) and younger than 15 ka – the team found these major stages in the last glacial cycle mapped an ecological change from a dry tundra dominated by abundant herbaceous plants (forbs including abundant anemones and forget-me-not), to a markedly depleted Arctic steppe ecosystem then moist tundra with woody plants and grasses dominating. They also analysed the eDNA of dung and gut contents from ice-age megafauna, such as mammoths, bison and woolly rhinos, where these were found, which showed that forbs were the mainstay of their diet. Using bones of large mammals 6 member of the team also established the timing of extinctions in the last 56 ka (Cooper, A. et al. 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science, DOI: 10.1126/science.aac4315), showing 31 regional extinction pulses linked to the rapid ups and downs of climate during Dansgaard-Oeschger cycles in the run-up to the last glacial maximum. By the end of the last glacial maximum, the megafauna were highly stressed by purely climatic and ecological factors. Human predation probably finished them off.

Are coral islands doomed by global warming?

Among the most voluble and persistent advocates of CO2 emissions reduction are representatives of islands in the tropics that are built entirely of reef coral. All the habitable land on them reaches only a few metres above high-tide level, so naturally they have more cause to worry about global warming and sea-level rise than most of us. Towns and villages on some atolls do seem to be more regularly inundated than they once were. So a group of scientists from New Zealand and Australia set out to check if there have been losses of land on one Pacific atoll, Funafuti, during the century since tidal observatories first recorded an average 1.7 mm annual rise in global sea level and a faster rate (~3 mm a-1) since 1993 (Kench, P.S. et al. 2015. Coral islands defy sea-level rise over the past century: Records from a central Pacific atoll. Geology, v. 43, p.515-518).

English: Funafuti (Tuvalu) from space Magyar: ...

Funafuti atoll (Tuvalu) from space (credit: Wikipedia)

Funafuti atoll comprises 32 islands that make up its rim, with a range of sizes, elevations, sediment build-ups and human modifications. The atoll was first accurately surveyed at the end of the 19th century, has aerial photographic cover from 1943, 1971 and 1984 and high-resolution satellite image coverage from 2005 and 2014, so this is adequate to check whether or not sea-level rise has affected the available area and shape of the habitable zone. It appears that there has been no increase in erosion over the 20th century and rather than any loss of land there has been a net gain of over 7%. The team concludes that coral reefs and islands derived from their remains and debris are able to adjust their size, shape and position to keep pace with sea level and with the effects of storms.

English: Looking west from a beach on Fongafal...

Beach on Fongafale Islet part of Funafuti Atoll, Tuvalu. (credit: Wikipedia)

This is an observation of just one small community in the vastness of the Pacific Ocean, so is unlikely to reassure islanders elsewhere who live very close to sea level and are anxious. It is a finding that bears out longer-term evidence that atolls remained stable during the major sea-level changes of the post-glacial period until about 7 thousand years ago when land glaciers stabilised. Since coral grows at a surprisingly rapid rate, that growth and the local redistribution of debris released by wave action keep pace with sea-level change; at least that taking place at rates up to 3 mm per year. But the study leaves out another threat from global warming. Corals everywhere are starting to show signs of ill thrift, partly resulting from increasing acidity of seawater as more CO2 dissolved in it and partly from increases in sea-surface temperature, as well a host of other implicated factors. This manifests itself in a phenomenon known as coral bleaching that may presage die-off. Should coral productivity decrease in the Pacific island states then the material balance shifts to land loss and sea level will begin an irresistible threat.

Flourishing life during a Snowball Earth period

That glacial conditions were able to spread into tropical latitudes during the late Neoproterozoic, Cryogenian Period is now well established, as are the time spans of two such events. https://earth-pages.co.uk/2015/05/21/snowball-earth-events-pinned-down/ But what were the consequences for life that was evolving at the time? That something dramatic was occurring is signalled by a series of perturbations in the carbon-isotope composition of seawater. Its relative proportion of 13C to 12C (δ13C) fell sharply during the two main Snowball events and at other times between 850 to 550 Ma. Since 12C is taken up preferentially by living organisms, falls in δ13C are sometimes attributed to periods when life was unusually suppressed. It is certain that the ‘excursions’ indicate that some process(es) must have strongly affected the way that carbon was cycled in the natural world.

English: Earth, covered in ice.

Artist’s impression of a Snowball Earth as it would appear with today’s continental configuration adjacent to the East Pacific Ocean. (Photo credit: Wikipedia)

The further sea ice extended beyond landmasses during Snowball events the more it would reduce the amount of sunlight reaching the liquid ocean and so photosynthesis would be severely challenged. Indeed, if ice covered the entire ocean surface – the extreme version of the hypothesis – each event must have come close to extinguishing life. An increasing amount of evidence, from climate- and oceanographic modelling and geological observation, suggests that a completely icebound Earth was unlikely. Nevertheless, such dramatic climate shifts would have distressed living processes to the extent that extinction rates were high and so was adaptive radiation of survivors to occupy whatever ecological niches remained or came into being: evolution was thereby speeded up. The roughly half-billion years of the Neoproterozoic hosted the emergence and development of multicellular organisms (metazoan eukaryotes) whose cells contained a nucleus and other bodies such as mitochondria and the chloroplasts of photosynthesisers. This hugely important stage of evolution burst forth shortly after – in a geological sense – the last Snowball event, during the Ediacaran and the Cambrian Explosion. But recent investigations by palaeontologists in glaciogenic rocks from China unearthed a rich diversity of fossil organisms that thrived during a Snowball event (Ye, Q. et al. 2015. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology, v. 43, p. 507-510).

The Nantuo Formation in southern China contains glaciogenic sedimentary rocks ascribed to the later Marinoan glaciation (640 to 635 Ma). Unusually, the pebbly Nantuo glaciogenic rocks contain thin layers of siltstones and black shales. The fact that these layers are free of coarse fragments that floating ice may have dropped supports the idea that open water did exist close to glaciated landmasses in what is now southern China. Palaeomagnetic measurements show that the area was at mid-latitudes during the Marinoan event. The really surprising feature is that they contain abundant, easily visible fossils in the form of carbonaceous ribbons , disks, branching masses and some that dramatically resemble complex multi-limbed animals, though they are more likely to be part of an assemblage of algal remains. Whatever their biological affinities, the fossils clearly signify that life happily flourished beneath open water where photosynthesis provided a potential base to a food chain, though no incontrovertible animals occur among them.

See also: Corsetti, F.A. 2015. Live during Neoproterozoic Snowball Earth. Geology, v. 43, p. 559-560.