Category Archives: Anthropology and Geoarchaeology

Yukon colonised during Last Glacial Maximum

For many years anthropologists were certain that the Americas remained outside the human realm until the great icecap of North America had begun to melt decisively. This view stemmed partly from the only conceived route being across the exposed floor of the Bering Sea when sea-level had fallen to leave it as a landmass known as Beringia. The other literal stumbling block had been the glacial blockage of the only lowland corridor from Alaska to the Great Plains which roughly follows the Alberta – British Columbia border in Canada. There is abundant evidence that the corridor did not become ice-free until about 13 ka, an important fact that for a long while bolstered the Clovis-First hypothesis, from the eponymous and highly distinctive stone tools that date back to just after that time. After a long, sturdy rearguard action by its devotees that view was transcended by finds of earlier tools with dates as old as 15.5 ka that extend close to the southernmost tip of South America. Studies of Y-chromosome DNA from living First Nations men that suggested that all early Americans stemmed from 4 separate colonising populations who may have entered via Beringia by different routes, including along the Pacific coast. A possible common ancestor of all native Americans has turned up from the mitochondrial and Y-chromosome DNA of a fossil skeleton from near Lake Baikal in Siberia who lived about 24 ka ago. But yet another twist has emerged from the Yukon Territory of Northern Canada.

Beringia Land Bridge. Animated gif of its prog...

Beringia Land Bridge. Animation of its development from 21.000 BC to modern times.(Photo credit: Wikipedia)

Since 1987 it has been known that animal bones with clear signs of butchery occurred in the Bluefish Cave on the Yukon – Alaska border. Dating of the bones by the 14C method seemed to support human occupation there during the Last Glacial Maximum; highly controversial at the time, in the absence of any other sites of that age in the whole Americas. The material has now been re-examined and dated by a more advanced radiocarbon method (Bourgeon, L. et al. 2017. Earliest human presence in North America dated to the Last Glacial Maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE, v. 12; doi:10.1371/journal.pone.0169486). This work has confirmed the earlier view since the ages of bones range from 24 to 12 ka. But the discovery of what seems long-term occupation under the most arduous glacial conditions is not the only outcome of the research. One hypothesis for the genetic diversity among living indigenous people of the Americas is that their forebears, the first people of the Americas, may have been from genetically isolated populations stranded on Beringia, yet surviving eventually to migrate southward once climate warmed. The ‘Beringian standstill hypothesis’ suggest that the small population underwent genetic drift for about eight thousand years, their descendants inheriting the genetic diversity produced by this process. Bluefish Cave is probably where some of those pioneers waited-out the Ice Age

Neanderthals and dental hygiene

Teeth are the most likely parts of skeletons to survive for long periods because of their armour by a layer of enamel made of hydroxyapatite (Ca5(PO4)3(OH)). Dental enamel is the hardest material in the bodies of vertebrate animals and lies midway between fluorite and feldspar on Moh’s scale of hardness (value 5). Like the mineral apatite, teeth survive abrasion, comminution and dissolution for long periods in the surface environment. Subdivision of fossil hominin species and even among different groups of living humans relies to a marked extent on the morphology of their teeth’s biting and chewing surface. Although there are intriguing examples in Neolithic jawbones of dental cavities having been filled it is rather lack of attention to teeth that characterises hominin fossils. As well as horrifying signs of mandibular erosion due to massive root abscesses, a great many hominin remains carry large accumulations of dental plaque or calculus made of mineralised biofilm laid down by oral bacteria. Even assiduous brushing only delays the build up. Grisly as this inevitability might seem, plaque is an excellent means of preserving not only the bacteria but traces of what an individual ate. As fossil DNA is a guide to ancestry and relatedness among fossil hominins, so far going back to about 430 ka in the case of a Spanish Homo heidelburgensis, plaque potentially may reveal details of diet and to some extent social behaviour elaborating beyond the possibilities presented by carbon isotopes and dental wear patterns.

Plaque deposits have already shown that Neanderthals had a very varied vegetable diet and that they cooked their food, the sugars thereby released encouraging bacterial biofilms. There have even been hints that they used medicinal herbs, such as yarrow and chamomile. Now a large multinational team of scientists has taken this fascinating line of study a step further using short DNA fragments to identify the actual oral microbes and even plant and animal species that dominated the diets of 8 cave-dwelling Neanderthals found in Spain, Belgium and Italy (Weyrich, L.S. and 30 others 2017. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature, v. 543; online doi:10.1038/nature21674). The Spanish individuals found in El Sidrón cave seem to have been mainly vegetarian (mushrooms, pine nuts and edible moss) whereas two from the Spy cave in Belgium feasted on wooly rhinoceros and mouflon sheep. One of the El Sidrón Neanderthals had a dental abscess, and was probably in great pain, and whose calculus contained evidence of ingestion of tissue from poplar trees, known to contain salicylic acid (the active ingredient in aspirin): an example of self-medication. The unfortunate individual was also suffering from acute diarrhoea brought on by a eukaryote parasite (microsporidium). Astonishingly, DNA from several plant fungi, including Penicillium rubens (penicillin) also occurred in this individual’s calculus, from eating mouldy plant material: predating modern antibiotics by more than forty-five thousand years!

More predictable findings from the unfortunate El Sidrón individual was a spectrum of common plaque colonising bacteria. But another surprise was Methanobrevibacter oralis, an archaea common in the human mouth ecosystem, for which a complete genome was reconstructed. It is different from that in the Methanobrevibacter oralis found in living humans and the team were able to use a molecular clock approach to date the divergence between the two sub-species. This seems to have occurred between 112-143 ka ago, long after the divergence of Neanerthals and anatomically modern humans, judged to be around 450 to 750 ka ago. The authors suggest that ‘commensal microbial species were transferred between the two hosts during subsequent interactions, potentially in the Near East’. Two alternative ‘interactions’ occurred to one commentator: kissing or exchange of chewed food (Callaway, E, 2017. Plaque DNA hints at Neanderthal lifestyle. Nature, v. 543, p. 163). Intriguingly the date, albeit imprecise, overlaps with estimates for the timing of Neanderthal – modern human interbreeding as the latter began to leave Africa: not only do living non-Africans share genes with Neanderthals, the may also share saliva and oral bacteria.

For more information on recent human evolution see here.

Denisovan(?) remains in the garden

On the edge of the small town of Lingjing near Xuchang City in Henan Province, China, local people have long practiced intensive vegetable gardening because the local soil is naturally irrigated by the water table beneath the flood plain deposits of the Yinghe River. In the mid 1960s, around a small spring, they began to find dozens of small stone tools together with animal bones. Only in 2005, after the spring had stopped flowing, did systematic excavation begin (Li, Z.-Y. et al. 2017. Late Pleistocene archaic human crania from Xuchang, China. Science, v. 355, p. 969-972; doi: 10.1126/science.aal2482) About 3.5 m below the surface tools and bone fragments, including one with a carved representation of a bird, occurred just above the base of the modern soil profile. Radiocarbon dating of charcoal from the layer clustered around 13 500 years ago, just before the start of the Younger Dryas cooling episode; probably products of modern humans, although no human remains were found in the layer. Continued excavation penetrated sediments free of fossils and tools down to a depth of 8 m, when stone tools and bone fragments began to turn up again through the lowest 2 m of sediment. Optically stimulated luminescence (OSL) dating of mineral grains, which shows the last time that sediments were exposed to sunlight, produced much older dates between 78 to 123 ka. The thousands of stone flakes and cores, and cut marks on the animal bones found through the fossil-rich layer suggests that this was a site long used for tool making and food preparation, that had begun in the last interglacial period. Among the bones were fragments of the crania of as many as five individual humans.

Who were they? Their age range is tens of thousands of years before anatomically modern humans began to migrate into east Asia, so they are likely to have been an earlier human group. Homo erectus is known to have inhabited China since as early as 1.6 Ma ago and may be a possibility. The other possible group are the Denisovans, known only from their DNA in a small finger bone from a cave in eastern Siberia. Fragments of Denisovan DNA are famously present in that of many living indigenous people from eastern Asia, Melanesia and the Americas, but hardly at all in west Asians and Europeans. They also interbred with Neanderthals and may share a common ancestor with us and them, who lived about 700 ka ago.

Map showing the proportion of the genome inferred to be Denisovan in ancestry in diverse non-Africans. The color scale is not linear to allow saturation of the high Denisova proportions in Oceania (bright red) and better visualization of the peak of Denisova proportion in South Asia. (Credit: Sankararaman et al./Current Biology 2016;

Map showing the proportion of the genome inferred to be Denisovan in ancestry in non-Africans. The color scale ranges from black – 0, through greens – present to red – highest . (Credit: Sankararaman et al./Current Biology 2016;

Unfortunately the human bones are completely fragmented and lack any teeth, jaw bones or elements of the face. However, the Chinese-US team used sophisticated computer refitting of CT-scanned fragments to reconstruct two of the crania, revealing one individual with prominent brow ridges and a flat-topped skull extended towards the back, similar to that of Neanderthals but with a much larger brain than H. erectus. The semi-circular canals associated with the ears, but used in balancing, are well preserved and also resemble those of Neanderthals. Yet east Asia has yielded not a single Neanderthal fossil. Could these be the elusive Denisovans? Even if more diagnostic bones turn up, especially teeth, such is the state of late hominin taxonomy that only DNA will provide definitive results: the Denisovans are defined entirely by DNA. The authors, perhaps wisely, do not speculate, but others may not be able to resist the temptation.

For more information on recent human evolution see here.

Gibbons, A. 2017. Close relative of Neandertals unearthed in China. Science, v. 355, p. 899; doi: 10.1126/science.355.6328.899

Human penis bone lost through monogamy?

The baculum or penis bone is arguably the most variable of mammalian bones, present in some species but not others. Among those in which it does occur the baculum varies enormously in shape, length and breadth relative to body size. This makes it likely to have been subject to the most divergent evolution among mammals. Yet its evolution has remained somewhat puzzling until recently. Observation has shown that the width of the baculum in male house mice is positively correlated with reproductive success. So one factor in the bone’s evolution may be postcopulatory sexual selection: female mice seem to favour males well endowed in this department once they have mated with them, a notion supported by careful laboratory experimentation. The physical role of the penis bone is to support and protect the penis during sexual intercourse. Sturdy dimensions are increasingly efficacious the longer the duration and the greater the frequency of copulation, particularly among polygamous and seasonally breeding species. They also tend to delay or inhibit a female mating with another male after copulation.

Walrus baculum, approximately 22 inches long

Walrus baculum, approximately 0.6 metres long (credit: Wikipedia)

Matilda Brindle and Christopher Opie of University College London have applied advanced phylogenetic statistical analysis to data on the dimensions of penis bones among 2000 mammal species (Brindle, M. & Opie, C. 2016. Postcopulatory sexual selection influences baculum evolution in primates and carnivores. Proceedings of the Royal Society, B, v. 283, doi: 10.1098/rspb.2016.1736) and suggest that the baculum first evolved in mammals between 145 to 95 Ma ago, earlier mammals likely having no penis bone. Ancestral primates and carnivorous mammals, however, were so endowed. Yet some mammalian species have lost the baculum.  Among the primates human males do not have one whereas male chimpanzees and bonobos, with which we share a last common ancestor, do: both are boisterously promiscuous whereas humans are pair-bonded to a large degree.

The issue of polygamy versus monogamy among human ancestors, and when the latter emerged, continues to exercise palaeoanthropologists. The former in other living primates is often associated with a marked contrast in size between males and females – sexual dimorphism. The earliest hominins, such as species of Australopithecus, did exhibit such dimorphism whereas species of Homo show significantly less size contrast, which some have taken to mark the emergence of pair-bonding amongst members of the earliest human species to be passed on to their successors. Another indicator of competitiveness among primate males for females, and their dominance over the latter, is the near universal possession of large canine teeth among males of polygamous primates; an odd feature for species whose diet is dominantly and often exclusively vegetarian. Not only do living humans not have prominent canines, neither do any known fossil hominins. Despite the views of a small minority of anthropologists who demand that modern human females won social parity with males only in the last 100 thousand years, only to lose it following the Neolithic ‘revolution’, the physical evidence suggests that a trend towards that emerged with other distinct characteristics of hominins and concretised in early Homo. An assiduous search for fossil hominin penis bones may yet reveal the moment of monogamy.

Tree-climbing australopithecines

We know that Lucy, the famous Australopithecus afarensis, could climb trees because her many bone fractures show that she fell out of a tree to her death. But that does not mean her species was an habitual tree-climber: plenty of modern humans fall to their deaths from trees, cliffs and the like. But the issue seems to have been resolved by using X-ray tomography of Lucy’s limb bones (Ruff, C.B. et al. 2016. Limb bone structural proportions and locomotor behaviour in A.L. 288-1 (“Lucy”).  PLOS ONE v. 11, e0166095. doi:10.1371/journal.pone.0166095) during the skeleton’s triumphal series of exhibits in the US.

The authors, including two of those who showed that Lucy died after a fall using similar data, compared the digital 3-D models of her surviving arm- and leg bones with those of other hominins and living primates, estimating their relative strengths at different positions. Lucy was probably stronger in the arm than in the leg, but not to the same degree as chimpanzees. This is a feature that would significantlyassist climbing , but her bipedal locomotion on the ground would have been only slightly different from that of later Homo species. If anything, her strength relative to size would have been greater than ours, perhaps reflecting less reliance on tools for getting food and defending herself. But almost certainly Australopithecus afarensis habitually spend more time in trees, perhaps foraging and as a defence against predation, especially at night.

The new data for Lucy allows palaeoanthropologists to better judge the capabilities of other hominins. Interestingly Homo habilis, the earliest of our genus, may have had similar habits. But later species, beginning with H. erectus/ergaster, were as Earth-bound as we are. This suggests a shift in hominin ecology from an early and probably long history of semi-arboreal behavior until humans became masters of their terrain about 1.9 Ma ago, probably through their invention of better tools and the controlled use of fire.

Read more about human evolution here and here

Neanderthal culture confirmed

The Châtelperronian material culture represents the earliest sign of the Upper Palaeolithic in Europe and its products span a period from about 45 to 40 ka. It includes stone tools, such as points and long, thin blades with a single cutting edge and a blunt back, reminiscent of a modern knife, and others with notched, or denticulate edges that resemble saw blades. A great many of the tools, including ivory and bone ones, are probably designed for working and stitching skins. But the most revealing worked objects are animal teeth, shells and fossils that are either bored or grooved to be strung together. The best have been found in the Grotte du Renne in eastern France. The most controversial aspect of the Châtelperronian is that its artefacts are sometimes found with the fossil remains of Neanderthals who had previously produced less sophisticated, Mousterian tools since around 160 ka. The controversy centres on whether or not Neanderthals created the Châtelperronian culture, and if so, did they develop them independently or through cultural exchange with or copying from the newly arrived anatomically modern humans (AMH).

Science Magazine

Châtelperronian ornaments from the Grotte du Renne eastern France, probably parts of a necklace. (Credit: ©Marian Vanhaeren, CNRS, University of Bordeaux)

The Grotte du Renne material is especially rich in ornaments, but insufficient fossil material is present to tell from anatomical characteristics whether or not they were made by AMH or Neanderthals. It has now become possible using traces of bone proteins to detect hominin bone fragments and DNA to assess which group is implicated (Welker, F. and 127 others, 2016. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proceedings of the National Academy of Science, Analyses of mtDNA and radiometric dating of the bones that yielded it show that the Grotte du Renne tools and ornaments link with Neanderthals who lived there about 37 ka ago. Interestingly, the stratigraphic horizon beneath the definite Neanderthal occupation level contains their earlier, Mousterian artefacts. So it seems that they developed new manufacturing techniques and material culture. Yet, the findings do not resolve the issue of independent invention or copying AMH methodology.

Importantly, Grotte du Renne shows that Neanderthals, even if they copied AMH techniques, were capable of appreciating, producing and using personal ornamentation: they could learn and transmit ideas. In that respect, here is support for the notion that, apart from significant anatomical differences from AMH they were not that different intellectually.

More on Neanderthals, Denisovans and anatomically modern humans

Wade, L. 2016. Neandertals made jewelry, proteins confirm. Science, v. 353, p. 1350.

Out of Africa: a little less blurred?

DNA from the mitochondria of humans who live on all the habitable continents shows such a small variability that all of us must have had a common maternal ancestor, and she lived in Africa about 160 ka ago. Since this was first suggested by Rebecca Cann, Mark Stoneking and Allan Wilson of the University of California, Berkeley in 1987 there has been a stream of data and publications – subsequently using Y-chromosome DNA and even whole genomes – that both confirm an African origin for Homo sapiens and illuminate it. Analyses of the small differences in global human genetics also chart the routes and – using a ‘molecular clock’ technique – the timings of geographic and population branchings during migration out of Africa. As more and better quality data emerges so the patterns change and become more intricate: an illustration of the view that ‘the past is always a work in progress’. The journal Nature published four papers online in the week ending 25 September 2016 that demonstrate the ‘state of the art’.

Three of these papers add almost 800 new, high-quality genomes to the 1000 Genomes Project that saw completion in 2015. The new data cover 270 populations from around the world including those of regions that have previously been understudied for a variety of reasons: Africa, Australia and Papua-New Guinea. All three genomic contributions are critically summarized by a Nature News and Views article (Tucci, S & Akey, J.L. 2016. A map of human wanderlust. The fourth paper pieces together accurately dated fossil and archaeological findings with data on climate and sea-level changes derived mainly from isotopic analyses of marine sediments and samples from polar ice sheets (Timmermann, A & Friedrich, T. 2016. Late Pleistocene climate drivers of early human migration. Nature, doi:10.1038/nature19365). Axel Timmermann and Tobias Friedrich of the University of Hawaii have attempted to simulate the overall dispersal of humans during the last 125 ka according to how they adapted to environmental conditions; mainly the changing vegetation cover as aridity varied geographically, together with the opening of potential routes out of Africa via the Straits of Bab el Mandab and through what is now termed the Middle East or Levant. They present their results as a remarkable series of global maps that suggest both the geographic spread of human migrants and how population density may have changed geographically through the last glacial cycle. Added to this are maps of the times of arrival of human populations across the world, according to a variety of migration scenarios. Note: the figure below estimates when AMH may have arrived in different areas and the population densities that environmental conditions at different times could have supported had they done so. Europe is shown as being possibly settled at around 70-75 ka, and perhaps having moderately high densities for AMH populations. Yet no physical evidence of European AMH is known before about 40 ka. Anatomically modern humans could have been in Europe before that time but failed to diffuse towards it, or were either repelled by or assimilated completely into its earlier Neanderthal population: perhaps the most controversial aspect of the paper.


Estimated arrival time since the last continuous settlement of anatomically modern human migrants from Africa (top); estimated population densities around 60 thousand years ago. (Credit: Axel Timmermann University of Hawaii)

The role of climate change and even major volcanic activity – the 74 ka explosion of Toba in Indonesia – in both allowing or forcing an exodus from African homelands and channelling the human ‘line of march’ across Eurasia has been speculated on repeatedly. Now Timmermann and Friedrich have added a sophisticated case for episodic waves of migration across Arabia and the Levant at 106-94, 89-73, 59-47 and 45-29 ka. These implicate the role of Milankovich’s 21 ka cycle of Earth’s axial precession in opening windows of opportunity for both the exodus and movement through Eurasia; effectively like opening and closing valves for the flow of human movement. The paper is critically summarised by a Nature News and Views article (de Menocal, P.B. & Stringer, C. 2016. Climate and peopling of the world. Nature, doi:10.1038/nature19471.

This multiple-dispersal model for the spread of anatomically modern humans (AMH) finds some support from one of the genome papers (Pangani, L. and 98 others 2016. Genomic analyses inform on migration events during the peopling of Eurasia. Nature (online). A genetic signature in present-day Papuans suggests that at least 2% of their genome originates from an early and largely extinct expansion of AMH from Africa about 120 ka ago, compared with a split of all mainland Eurasians from African at around 75 ka. It appears from Pangani and co-workers’ analyses that later dispersals out of Africa contributed only a small amount of ancestry to Papuan individuals. The other two genome analyses (Mallick, S. and 79 others 2016. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature (online); Malaspinas, A.-S. and 74 others 2016. A genomic history of Aboriginal Australia. Nature (online). suggest a slightly different scenario, that all present-day non-Africans branched from a single ancestral population. In the case of Malaspinas et al. an immediate separation of two waves of AMH migrants led to settlement of Australasia in one case and to the rest of Mainland Eurasia. Yet their data suggest that Australasians diverged into Papuan and Australian population between 25-40 ka ago. Now that is a surprise, because during the lead-up to the last glacial maximum at around 20 ka, sea level dropped to levels that unified the exposed surfaces of Papua and Australia, making it possible to walk from one to the other. These authors appeal to a vast hypersaline lake in the emergent plains, which may have deterred crossing the land bridge. Mallick et al. see an early separation between migrants from Africa who separately populated the west and east of Eurasia, with possible separation of Papuans and Australians from the second group.  These authors also show that the rate at which Eurasians accumulated mutations was about 5% faster than happened among Africans. Interestingly, Mallick et al. addressed the vexed issue of the origin of the spurt in cultural, particularly artistic, creativity after 50 ka that characterizes Eurasian archaeology. Although their results do not rule out genetic changes outside Africa linked to cultural change, they commented as follows:

‘… however, genetics is not a creative force, and instead responds to selection pressures imposed by novel environmental conditions or lifestyles. Thus, our results provide evidence against a model in which one or a few mutations were responsible for the rapid developments in human behaviour in the last 50,000 years. Instead, changes in lifestyles due to cultural innovation or exposure to new environments are likely to have been driving forces behind the rapid transformations in human behaviour …’.

Variations in interpretation among the four papers undoubtedly stem from the very different analytical approaches to climate and genomic data sets, and variations within the individual sets of DNA samples. So it will probably be some time before theoretical studies of the drivers of migration and work on global human genomics and cultural development find themselves unified. And we await with interest the pooling of results from all the different genetics labs and agreement on a common data-mining approach.

Lucy: the australopithecine who fell to Earth?

The specimen of Australopithecus afarensis known far beyond the confines of palaeoanthropology as Lucy remains the iconic figure of hominin evolution, 42 years after her discovery by Donald Johanson and Tom Gray near Hadar in the Awash valley of the Afar Depression, Ethiopia. Her skeletal remains were not complete, but sufficient to recognize that they were from the oldest known upright hominin and that they were female, the pelvis having affinities to that of human women rather than other extant apes. Yet her skull was more akin to apes with a brain volume about the same as a modern chimpanzee’s. Part of the reason for her fame stems from being named after a character in a somewhat mystical song by the British pop group, the Beatles, which was played over and over in the palaeontologist’s camp – good job the find wasn’t during the 1990’s acme of gangsta rapper Apache.

Subsequently, the entombing strata were radiometrically dated at around 3.2 Ma. Lucy, in common with most fossils roughly in the human line of descent, has from the outset been the subject of controversy, even at one time being said to be misnamed because of alleged male characteristics; a view swiftly discarded. Like the treasures of Tutankhamun, Lucy’s actual remains have been exhibited far and wide, including a 6-year stay in the US. Fears of damage in transit led the Ethiopian authorities to produce casts for distribution, and Lucy is now restricted to the National Museum in Addis Ababa. As a further precaution, all the actual bones were rendered in digital 3-dimensions using a high-resolution CT scanner during her US sojourn. It is these scans that have led to a surprising development as regards her original fate. Apart from signs of a single carnivore tooth mark, her remains were not devoured by scavengers, nor did early anatomical examinations suggest any sign of disease and she was estimated to have been a young mature female when she died – the cause of death was unknown.

Model of the australopithecus Lucy in the muse...

Model of the Lucy (Australopithecus afarensis) in the museum of Barcelona (credit: Wikipedia)

Detailed forensic analysis of the CT scans (Kappelman, J. and 8 others 2016. Perimortem fractures in Lucy suggest mortality from fall out of tall tree. Nature, v. 537, published online 29 August 2016, doi:10.1038/nature19332) revealed far more than did the original bones, including evidence for numerous fractures in Lucy’s limbs, ribs and cranium, many of which are of the compressive or ‘greenstick’ kind. Those in the left ankle and leg bones (talus, tibia, fibula and femur) are compressive and suggest a severe vertical impact of the heel with enough force to smash the strongest bones in the body, driving the hip into the pelvis. Damage to the ribs, pelvis and lower spine (sacrum) is commensurate with a further horizontal, frontal impact of the torso. Arm (humerus), wrist (radius)  shoulder blade (scapula) and collar (clavical) bone fractures are typical of injuries sustained when a falling person tries to break a fall by stretching out the arms. Damage to the cranium and lower jaw (mandible) suggest this instinctive defence posture was futile. None of the fractures show signs of healing, so the multiple traumas were immediately fatal.

Forensic reconstruction of how Lucy fell to meet her end. (credit: John Kappelman et al, doi: 10.1038/nature19332)

Forensic reconstruction of how Lucy fell to meet her end. (credit: John Kappelman et al, doi: 10.1038/nature19332)

The traumatic pattern is reminiscent of someone falling onto hard ground from great height; perhaps equivalent to a four- or five-storey building (see animated reconstruction here). In Lucy’s case, the most likely scenario is from a large tree, perhaps while foraging or sleeping in a safe refuge from ground predators. Forensic analysis of newly dead victims of severe falls generally show massive soft tissue damage by penetration of bone fragments or a ‘hydraulic ram effect’ in which abdominal organs are thrust upwards to produce cardiac damage. That Lucy was found almost intact rules out dismemberment by scavengers or transport by flood water. Indeed, the preservation of even tiny slivers of fractured bone seems to suggest her burial in flood plain sediments before decomposition had set in. A question that the authors do not address is whether or not she may have been deliberately interred, which to me seems a possibility that could be drawn from the detailed evidence. I wonder what a modern coroner might conclude: probably misadventure.

More on hominin evolution can be found here.

Climatic conditions for early hominin evolution

Until about 1.8 Ma ago, when early Homo erectus and perhaps other archaic hominins strode into Eurasia, our forerunners lived and evolved on only one continent – Africa. The physical and environmental conditions underlying the steps from a common ancestor with modern chimpanzees through a growing number of upright species are not well charted by the Pliocene and early Pleistocene terrestrial evidence. All that is know of this formative period is that global climate cooled in an oscillating fashion that culminated in the onset of Northern Hemisphere glaciations in the late Pliocene (~3 Ma) and a shift to drier conditions in East Africa around 2.8 Ma suggested by pollen records off the east coast. Marine sediments of the Indian Ocean, Red Sea and Gulf of Aden still offer the most convenient means of charting environmental change in detail for this crucial episode in human history. As well as oxygen-isotope and pollen-type variations, modern core analysis offers a growing number of wind-blown proxies for onshore vegetation. These include organic geochemistry plus carbon and hydrogen isotopes from trace amounts of leaf waxes. During the May to September East African Monsoon, high speed winds in the upper atmosphere drag dusty continental air from the East African Rift System over the Gulf of Aden, making sea-floor sediment an important target for tracking variations in the proxies (Liddy, H.M. et al. 2016.  Cooling and drying in northeast Africa across the Pliocene.  Earth and Planetary Science Letters, v. 449, p. 430-438. doi:10.1016/j.epsl.2016.05.005). Hannah Liddy and colleagues from the Universities of Southern California and Arizona, USA, applied these techniques to a Gulf of Aden core from offshore Somaliland to open a window on this crucial period.

Early history of hominin evolution and evidence for climate change in East Africa. Based on a diagram at the website

Early history of hominin evolution and evidence for climate change in East Africa. Based on a diagram at the website and in Stepping Stones Chapter 22

Early Pliocene East Africa (5.3 to 4.3 Ma), the time of Ardepithecus ramidus, was characterized by evidence for a climate wet enough to sustain grasses and riverine woodlands. Yet around 4.3 Ma conditions had shifted to ecosystems more dominated by shrubby plants able to thrive in more arid conditions. At about that time the earliest australopithecines appear in the fossil record, with A. anamensis. Yet the later Pliocene was not devoid of grasses or herbivores. There is ample carbon-isotope evidence from the teeth of hominins that shows that after 3.4 Ma the diet of A. afarensis and A. africanus included increasing amounts whose carbon derived from grasses, when. This apparent paradox can be explained by a major turn to eating meat from herbivores as vegetable foods declined with increasing aridity. This is all very interesting, especially the detailed record of δ13C in plant waxes, but there is little to indicate that steps in hominin speciation or extinction had much direct connection with fluctuations in climatic conditions. Environmental change may have formed a background to other influences that may have been wholly down to early hominin’s social and technological behaviour.

Hobbit time

A few months after the diminutive hominin fossil Homo floresiensis, which because of its relatively large feet was quickly dubbed the ‘Hobbit’, turned out to be considerably older than previously thought it hit has the headlines again because its ancestors may have colonized the Indonesian island of Flores far earlier still. A pair of articles in the 9 June 2016 issue of Nature consider evidence from another site on the island where fluvial sediments offer more easily interpreted stratigraphy than the complex Liang Bua cave assemblage where the original skeletal remains were unearthed. The site in the So’a Basin became an important target for excavation following the discovery there in the 1950’s of stone artefacts, east of Wallace’s Line – a fundamental faunal and floral divide once thought to be due to the difficulty of crossing a deep, current-plagued channel in the Indonesian archipelago. The unexpected presence of artefacts drew palaeoanthropologists from far afield, but it was almost 50 years later before their exploration yielded hominin remains.

English: homo from flores

Homo floresiensis (credit: Wikipedia)

One of the papers reports sparse new finds of hominin material from the So’a Basin, a fragment of mandible and 6 isolated teeth thought to be from at least three individuals (van den Bergh, G.D. et al., 2016. Homo floresiensis-like fossils from the early Middle Pleistocene of Flores. Nature, v.  534, p. 245-248). The other covers newly discovered artefacts, the stratigraphic and palaeoecological setting, and radiometric dates of the finds (Brumm, A. and 22 others, 2016. Age and context of the oldest known hominin fossils from Flores. Nature, v.  534, p. 249-253). The jaw fragment shows signs of having once held a wisdom tooth, showing that it belonged to an adult. Yet although it resembles the dentition of the younger Liang Bua specimens, it seems more primitive and is even smaller. The other dental finds are most likely to be deciduous teeth of juveniles. Fission-track, uranium-series and 40Ar/39Ar dating indicates that the fossils entered the sediments about 700 ka ago. But tools and remains of prey animals in deeper sedimentary layers here and at other Flores sites indicate the presence of hominins back as far as about 1 Ma, before which there are no such signs.

So, at least a million years ago Flores was colonised by hominins. Either the original immigrants were uniquely small compared with other hominins of that vintage in Asia and Africa, or within 300 ka they had decreased in size through the evolutionary influence of limited resources on Flores and the process of island dwarfism. The second may also have been influenced by an initially small population of migrants or a later population ‘bottleneck’ that added a loss of genetic variability – a founder effect.   These two alternatives may point respectively to either the even earlier migration out of Africa and across most of Asia of perhaps H. habilis, or the dwarfing of a limited population of H. erectus who made their way there from their known occupation of Java. The authors painstaking analysis of the meagre remains suggest a closer dental resemblance to Asian Homo erectus than to earlier African hominins, so the second alternative seems more likely. However, even that scenario poses palaeoanthropology with a major problem; yet another evolutionary process that helps cryptify the links among our earlier relatives. (See also: Gomez-Robles, A., 2016. The dawn of Homo floresiensis. Nature, v.  534, p. 188-189.)