Zealandia: a hitherto undiscovered continent?

Mid-February 2017 saw the announcement in the world’s media of what was made out to be a previously unsuspected, drowned continent. No, not in the Atlantic, but surrounding New Zealand. For geoscientists this was not ‘fake news’, but neither was it a surprise. Precise bathymetry based on satellite data rather than more conventional soundings from ships had long shown a substantial area (4.9 million km2) of the Coral and Tasman Seas between Australia and New Zealand and the Pacific to the immediate south-east of New Zealand was considerably less deep than the mean for the world’s ocean floors. It shows up clearly on Google Earth.  The name ‘Zealandia’ had been suggested in 1995. The media flurry emerged from a paper published in the March/April 2017 issue of the Geological Society of America’s on-line newsletter (Mortimer, N. and 10 others 2017. Zealandia: Earth’s hidden continent. GSA Today, v. 27(3 March April 2107); doi:10.1130/GSATG321A.1), the phrase ‘hidden continent’ no doubt pulling in the hacks like mackerel to a piece of tin foil.

The extent of Zealandia shown by Google Earth – the paler the blue coloration the shallower the ocean floor

The 10 New Zealander authors with one Australian, based their definition of the anomalously shallow ocean floor as a continent on data accumulated over many years from geophysical surveys and spot sampling of rocks from dredging, drilling and field work on the area’s few islands as well as New Zealand itself. As well as being at a relatively high elevation – a mean of -1100 m compared with -3700 for the oceans as a whole – samples are  predominantly those expected from continental crust. In fact orogenic belts exposed in New Zealand can be traced lithologically and topographically on several large submerged ridges. Samples of its underlying mantle found as xenoliths in igneous rocks yield radiometric dates of 2.7 billion years. So it is an ancient entity, unlike oceanic crust none of which exceeds about 200 Ma. The ocean floor also exhibits a number of sedimentary basins dating back to the Cretaceous, which contain terrigenous clastic rocks and limestones that reach thicknesses of 2 to 10 km. Seismic surveys give an average P-wave speed of 6.5 km s-1 through the underlying crust, a density of 2830 kg m-3 and a crustal thickness between 30 and 46 km, none of which apply to mafic oceanic crust.

There are plenty of areas on the ocean floor that have such continental affinities, but they are small and referred to as microcontinents. To be dubbed ‘continent’ obviously involves an essence of mightiness, but for geologists the term also implies a lack of connection: hence Europe is a mere part of the Eurasian continent. The six geologically recognised continents (Africa, Eurasia, North America, South America, Antarctica, and Australia) are spatially isolated by geological and/or bathymetric features. Zealandia obeys that criterion, but only just: its NW end comes as close as 25 km to the crust of Australia, but the line of separation is a major fracture zone and 3600 m deep trough. However, Zealandia is considerably smaller than the recognised continents, but about the size of India and Arabia which some have regarded as having been a continent (India) and one in the process of formation (Arabia). Mortimer and co suggest that the size needed to be called a continent should be >1 million km2, which would clearly put New Zealand on a continent separate from Australia – long a source of irritation to Kiwis!

Setting aside any suggestion of some nationalist motives, Zealandia is very interesting. The very fact that it is uniquely drowned require some explanation. A great deal of evidence suggests that once being at the flank of Gondwanaland an extensional plate margin spalled it away around 85 Ma ago. In so doing tectonic forces substantially thinned the crust in a similar manner to what is presently happening on a smaller scale beneath the Afar Depression of Ethiopia. That would tend to result in widespread subsidence once any thermal buoyancy during rifting had cooled to increase crustal density. Such a process would explain the alternations of linear ridges and troughs that characterise this section of continental crust, but are less developed in the other continents.

More on continental growth and plate tectonics




One response to “Zealandia: a hitherto undiscovered continent?

  1. Chris Alexander

    Good call……needs further thought…

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s