How the first metazoan mass extinction happened

The end-Ordovician mass extinction was the first of five during the Phanerozoic, andthe first that involved multicelled organisms. It happened in two distinct phases that roughly coincided with an intense but short-lived glaciation at the South Pole, then situated within what is now the African continent. Unlike the other four, this biotic catastrophe seems unlinked to either a major impact structure or to an episode of flood volcanism.

seadiorama ordovician

Artist’s impression of an Ordovician shallow-sea community (credit: drtel)

In 2009 Earth Pages reported the curious occurrence in 470 Ma (Darriwilian Stage) Swedish limestones of a large number of altered chondritic meteorites, possible evidence that there may have been an extraterrestrial influence on extinction rates around that time. In support is evidence that the meteorite swarm coincided with megabreccias or olistostromes at what were then Southern Hemisphere continental margins: possible signs of a series of huge tsunamis. But in fact this odd coincidence occurred at a time when metazoan diversity was truly booming: the only known case of impacts possibly favouring life.

Number One of the Big Five mass extinctions occurred during the late-Ordovician Hirnantian stage (443-445 Ma) and has received much less attention than the later ones. So it is good see the balance being redressed by a review of evidence for it and for possible mechanisms (Harper, D.A.T et al. 2014. End Ordovician extinctions: A coincidence of causes. Gondwana Research, v. 25, p. 1294-1307). The first event of a double-whammy mainly affected free-swimming and planktonic organisms and those of shallow seas; near-surface dwellers such as graptolites and trilobites. The second, about a million years later, hit animals living at all depths in the sea. Between them, the two events removed about 85% of marines species – there were few if any terrestrial animals so this is close to the extinction level that closed the Palaeozoic at around 250 Ma.

No single process can be regarded as the ‘culprit’. However the two events are bracketed by an 80-100 m fall in sea level due to the southern hemisphere glaciation. That may have given rise to changes in ocean oxygen content and in the reduction of sulfur to hydrogen sulfide. Also climate-related may have been changes in the vertical, thermohaline circulation of the oceans, falling temperatures encouraging sinking of surface water to abyssal depths providing more oxygen to support life deep in the water column. Sea-level fall would have reduced the extent of shallow seas too. Those consequences would explain the early demise of shallow water, free swimming animals. Reversal of these trends as glaciation waned may have returned stagnancy and anoxia to deep water, thereby affecting life at all depths. The authors suggest generalized ‘tipping points’ towards which several global processes contributed.

Enhanced by Zemanta
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s