Wet Moon, dry Moon

Regular readers will remember my remarkable though very reluctant conversion to the notion that there may be water on Mars. My stubborn reaction had been against the background that shrouded the hypothesis with a certain desperation; the need of any future crewed mission to Mars for a water supply and thereby one of hydrogen fuel, plus the determination of the whole Mars-oriented community to justify such a mission by hyping ‘xenobiology’ on the ‘Red Planet’. A similar desperation claoked the search for surface water on the Moon, although one more dominated by the ‘Everest’ syndrome: since the boot prints and flags appeared, everyone wants to go. The Moons internal water is an entirely different kettle of fish. The hypothesis of the Moon’s formation by condensation from an incandescent mass flung into orbit after a planet – planet collision involving the Earth has the corollary that the lunar mantle ought to be bone dry: and so it seemed to be from bulk analyses of rocks brought back by the Apollo missions. In fact, there are a number of possibilities to explain vanishingly small amounts of internal water: the Moon is made of impactor that happened to be dry rather than terrestrial material; Earth and Moon are a mix of both and both Earth and impactor started out dry, but the Earth later received its water from comets; low pressure condensation of the Moon ruled out water entering itss silicate minerals and so on. Then water was found in apatite grains from lunar maria basalts (see Moon rocks turn out to be wetter and stranger in May 2010 issue of EPN). Within a couple of months we are back to the dry-as-an-alco’s-throat view (Sharp, Z.D. et al. 2010. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science, v. 329, p. 1050-1053). Both terrestrial and meteoritic chlorine isotopes are in remarkably consistent proportions, but lunar rocks show an 25 times greater spread by comparison. To cut a long and complicated discussion short, such a range could only have formed if chlorides of a variety of metals were vaporised from lunar magmas each having its own effect on fractionation of Cl isotopes. In turn, combination of chlorine with metal ions requires virtually no hydrogen ions and therefore vanishingly little water in the moon, otherwise chlorine would have been combined in HCl and not subject to any fractionation when that volatilised on eruption. So that seems settled, then…

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s