Tag Archives: Neoproterozoic

The East African Orogen: Neoproterozoic tectonics on display

Over a period of about 300 Ma the fragmentation of a supercontinent, Rodinia, drove a round of sea-floor spreading and continental drift that culminated in reassembly of the older continental pieces and entirely new crust in a new supercontinent, Gondwana. The largest source of evidence for this remarkable tectonic turnaround is a belt stretching N-S for over 3000 km from southern Israel through East Africa to Mozambique. At its widest the belt exposes Neoproterozoic  rocks and structures for some 1700 km E-W from west of the Nile in northern Sudan almost to Riyadh in Saudi Arabia.  This Arabian-Nubian Shield tapers southwards to thin out completely in northern Tanzania between far older cratons and in a state of high-grade metamorphism.

This East African Orogen has long been considered the best exposed bowels of former mountain building that there are: results of continent-continent collision and the bulldozing together of many oceanic arcs and remnants of oceanic lithosphere that once separated the cratons. This was much more complex than a case of head-on tectonics, the northward-swelling Arabian-Nubian Shield showing all the signs of being like a gigantic ‘pip’ squeezed out northwards from two cratonic jaws during the last stages of what is often called the Pan African Orogeny. Interestingly, the line of the orogen is roughly followed by East Africa’s other giant feature, the Rift Valley; actually two of them following Pan African terranes. A continental scale anisotropy has been reactivated and subject to extensional tectonics, and maybe in future a new round of sea-floor spreading as has begun in the Red Sea, some half a billion years after it formed.

Simplified geological map of the East African Orogen courtesy of the authors of Fritz et al 2013

Simplified geological map of the East African Orogen courtesy of the authors of Fritz et al 2013

Now there is an opportunity for anyone to download and read a digest of East African orogenic processes compiled by researchers from several countries along the belt and their colleagues from North America, Europe and Australia who have been privileged to work in this vast area (Fritz, H and 13 others 2013. Orogen styles in the East African orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, v. 86, p. 65-106 Click on the link, scroll to the Open Access article to download the 12 Mb PDF version). The authors present superb simplified geological maps of each major part of the orogen, a vast array of references and well-written accounts of its sector-by-sector tectonic and metamorphic evolution, variations in style and broad tectonic setting.

Early animals and Snowball Earth

"SNOWBALL EARTH" - 640 million years ago

The Earth 640 million years ago during the Marinoan ‘Snowball’ event (credit: Cornell University via Flickr)

Palaeobiologists generally believe that without a significant boost to oxygen levels in the oceans macroscopic eukaryotes, animals in particular, could not have evolved. Although the first signs of a rise in atmospheric oxygen enter the stratigraphic record some 2.4 billion years ago and eukaryote microfossils appeared at around 2 Ga, traces of bulky creatures suddenly show up much later at ~610 Ma with possible fossil bilaterian embryos preserved in 630 Ma old sediments. An intriguing feature of this Ediacaran fauna is that it appeared shortly after one of the Neoproterozoic global glaciations, the Marinoan ‘Snowball’ event: a coincidence or was there some connection? It has looked very like happenstance because few if any signs of a tangible post-Marinoan rise in environmental oxygen have been detected. Perhaps the sluggish two billion-year accumulation of free oxygen simply passed the threshold needed for metazoan metabolism. But there are other, proxy means of assessing the oxidation-reduction balance, one of which depends on trace metals whose chemistry hinges on their variable valency. The balance between soluble iron-2 and iron-3 that readily forms insoluble compounds is a model, although iron itself is so common in sediments that its concentration is not much of a guide. Molybdenum, vanadium and uranium, being quite rare, are more likely to chart subtle changes in the redox conditions under which marine sediments were deposited.

English: Cropped and digitally remastered vers...

Dickinsonia; a typical Ediacaran animal. Scale in cm (credit: Wikipedia)

Swapan Sahoo of the University of Nevada and colleagues from the USA, China and Canada detected a marked increase in the variability of Mo, V and U content of the basal black shales of the Doushantuo Formation of southern China, which contain the possible eukaryote embryos (Sahoo, S.K and 8 others 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, v. 489, p. 546-549). These rocks occur just above the last member of the Marinoan glacial to post-glacial sedimentary package and are around 632 Ma old. Since the black shales accumulated at depths well below those affected by surface waves that might have permitted local changes in the oxygen content of sea water the geochemistry of their formative environment ought not to have changed if global chemical conditions had been stable: the observed fluctuations may represent secular changes in global redox conditions. The earlier variability settles down to low levels towards the top of the analysed sequence, suggesting stabilised global chemistry.

What this might indicate is quite simple to work out. When the overall chemistry of the oceans is reducing Mo, V and U are more likely to enter sulfides in sediments, thereby forcing down their dissolved concentration in sea water. With a steady supply of those elements, probably by solution from basalt lavas at ocean ridges, sedimentary concentrations should stabilise at high levels in balance with low concentrations in solution. If seawater becomes more oxidising it holds more Mo, V and U in solution and sediment levels decline. So the high concentrations in sediments mark periods of global reducing conditions, whereas low values signal a more oxidising marine environment. Sahoo et al.’s observations suggest that marine geochemistry became unstable immediately after the Marinoan glaciation but settled to a fundamentally more oxidising state than it had been in earlier times, perhaps by tenfold increase in atmospheric oxygen content. So what might have caused this and the attendant potential for animals to get larger in the aftermath of the Snowball Earth event? One possibility is that the long period of glaciers’ grinding down continental crust added nutrients to the oceans. Once warmed and lit by the sun they hosted huge blooms of single-celled phytoplankton whose photosynthesis became an oxygen factory and whose burial in pervasive reducing conditions on the sea bed formed a permanent repository of organic carbon. The outcome an at-first hesitant oxygenation of the planet and then a permanent fixture opening a window of opportunity for the Ediacarans and ultimately life as we know it.

Pan African Review

A terrane boundary close to the Nile in the Sudan, detected by radar from the Space Shuttle: the Keraf Suture. From NASA

Undoubtedly the best exposed and one of the biggest examples, the accretionary orogen of the Arabian-Nubian Shield (ANS) is a witness to the creation of a supercontinent from the remnants of an earlier one. At about 1 Ga, most of the Earth’s continental material was clumped together in the Rodinia supercontinent that existed for a quarter of a billion years. At a time of massive mantle upheaval that left most crust of that age affected by basaltic magmatism, in the form of lava flows and dyke swarms, Rodinia began to break up at 800 Ma to scatter continental fragments. Subduction zone accommodated this continental drift to form many ocean and continental-margin volcanic arcs. The ANS is a repository for many of these arcs which episodically accreted between earlier cratons to the west in Africa and those comprising Somalia and the present Indian subcontinent. Primarily the terranes are oceanic in origin and formed in the aftermath of the dismemberment of Rodinia, although a few slivers of older, reworked crust occur in Saudi Arabia and Yemen. Among the various components are ophiolites marking sutures and other major tectonic features of the orogen. The shape of the Shield is unlike that of any other major orogen of later times, for it shrinks from a width estimated at ~2000 km in Arabia to the north to vanish just south of the Equator in southern Kenya. This ‘pinched’ structure has suggested to some that the bulk of the new crust was forced laterally northwards when the African and Indian cratons collided, in the manner of toothpaste from a trodden-on tube.

Today the ANS is a harsh place, some off-limits to geologists either for political reasons or the sheer hostility and remoteness of the environment. Yet a picture has emerged, bit by bit, over the last 30 years. So a detailed review of the most extensive and varied part from 7° to 32°N and 26° to 50°E – in Egypt, Saudia Arabia, eastern Sudan, Eritrea, Yemen and northern Ethiopia is especially welcome (Johnson, P.R. et al. 2011. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences, v. 61, p. 167-232). Peter Johnson himself compiled a vast amount of information during his career with the US Geological Survey Mission in Saudi Arabia and has blended the inevitably diverse ideas of his 7 co-workers – but by no means all the ideas that are in the literature. The result is a readable and well illustrated account of how the ANS assembled tectonically during times when a near-global glaciation took place, and the first macroscopic animals appear in the fossil record. Tillites and other glaciogenic rocks from the Marinoan ‘SnowBall’ occur from place to place in the ANS, as do banded iron formations that made a surprise return after a billion-year or longer absence in the Cryogenian Period . Coincidentally, glacial conditions returned to the region twice in Ordovician and Carboniferous to Permian times, forming distinctive, tectonically undisturbed sediments in the Phanerozoic cover that unconformably overlies the Neoproterozoic orogen.

Except in a few areas only recently explored, geologists have assiduously dated events in the ANS, showing nicely that all the basement rock formed after 800 Ma, and that orogenic events culminated before the start of the Cambrian period, although one or two unusual granites intruded as late as the Ordovician. The deformation is immense in places, with huge nappes, often strike-slip shear zones and exposure ranging from the lowest metamorphic grade to that in which water and granitic magma was driven from the lower Pan African crust. The range of exposed crustal levels stems partly from the tectonics, but owes a lot to the 2-3 km of modern topographic relief, unique to NE Africa and Arabia. Yet it is not uncommon to come upon delicate features such as pillowed lavas, conglomerates and finely laminated volcanoclastic tuffs. Following tectonic welding, more brittle deformation opened subsiding basins that contain exclusively sedimentary rocks derived from the newly uplifted crust, both marine and terrestrial in formation (basins of this type, in Eritrea and Ethiopia, unfortunately do not figure in the regional maps). Much of the ANS is currently the object of a gold rush, encouraged by a rising world price for the ‘inflation-proof’ comfort blanket provided by the yellow metal. Consequently, newcomers to the stampede will be well advised to mug-up on the regional picture of occurrences and gold-favourable geology provided in the review, and may be interested by other exploration possibilities for rare-earth metals and other rising stars on the London Metal Exchange, such as tin, which are often hosted in evolved granites, that stud the whole region.

Snowball Earth melting hypothesis weakened

"SNOWBALL EARTH" - 640 million years ago

Artist's impression of the Neoproterozoic Earth during a Snowball episode. Image by guano via Flickr

The combination of glaciogenic sediments with palaeomagnetic evidence for their formation at low-latitudes, together with dates that show glacial events were coeval in just two or three Neoproterozoic episodes are the linchpins for the Snowball Earth hypothesis.  There is little doubt that the latest Precambrian Era did witness such extraordinary climatic events. Evidence is also accumulating that, in some way, they were instrumental in that stage of biological evolution from which metazoan eukaryotes emerged: the spectacular Ediacaran fossil assemblages follow on the heels of the last such event (see Bigging-up the Ediacaran in Earth Pages for March 2011). One of the difficulties with the ‘hard’ Snowball Earth hypothesis is how the middle-aged planet was able to emerge from a condition of pole-to-pole ice cover; hugely increased reflectivity of that surface should have driven mean global temperature down and down. Clearly the Earth did warm up on each occasion, and the leading model for how that was possible is massive release of greenhouse gases from sea-floor sediments or deep-ocean waters to increase the heat-retaining powers of the atmosphere; sufficiently voluminous release from volcanic action seems less likely as there is little evidence of upsurges in magmatism coinciding with the events. Almost all glaciogenic units from the Neoproterozoic have an overlying cap of carbonate rocks, indicating that hydrogen carbonate (formerly bicarbonate) ions together with those of calcium and magnesium suddenly exceeded their solubilities in the oceans.

White flocculent mats in and around the extrem...

Modern sea-floor hydrothermal vent. Image via Wikipedia

To seek out a possible source for sufficient carbon release in gaseous form geochemists have turned to C-isotopes in the cap carbonates. Early studies revealed large deficits in the heavier stable isotope of carbon (13C) that seemed to suggest that the releases were from large reservoirs of carbon formed by burial of dead organisms: photosynthesis and other kinds of autotrophy at the base of the trophic pyramid selectively take up lighter 12C in forming organic tissues compared with inorganic chemical processes). As in the case of the sharp warming event at the Palaeocene-Eocene boundary around 55.8 Ma ago (See The gas-hydrate ‘gun’ in June 2003 Earth Pages), these negative d13C spikes have been interpreted as due to destabilisation of gas hydrates in sea-floor sediments to release organically formed methane gas. This powerful greenhouse gas would have quickly oxidised to CO2 thus acidifying the oceans by jacking up hydrogen carbonate ion concentrations.  Detailed carbon-, oxygen- and strontium-isotope work in conjunction with petrographic textures in a Chinese cap carbonate (Bristow, T.F. et al. 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, v. 274, p. 68-71) suggests an alternative mechanism to produce the isotopically light carbon signature at the end of Snowball events. The greatest 13C depletion occurs in carbonate veins that cut through the cap rock and formed at temperatures up to 378°C and even the early-formed fine grained carbonate sediment records anomalously high temperatures. So, it seems as if the cap-rock was thoroughly permeated by hydrothermal fluids, more than 1.6 Ma after it formed on the sea floor. This triggered oxidation of methane within the sediments themselves, with little if any need for an atmospheric origin through massive methane release from destabilised gas hydrates elsewhere.

Eukaryote conquest of the continents

NW end of a classic example of a mesa form of ...

Suilven, a spectacular outlier of Torridonian terrestrial sandstones resting on a buried landscape of Archaean gneisses near Lochinver, Sutherland. Image via Wikipedia

Geologists often assume that the continents were first colonised by plants, insects then vertebrates beginning in the Ordovician Period with preservation of spores very like those of the liverworts, which incidentally can only be removed from gravel driveways by the use of acetic acid, glyphosate, pycloram and flamethrowers having no lasting effect. The most intractable of all organisms found on the land surface today are prokaryotic (nucleus-free cells) cyanobacteria whose biofilms cement desert varnish (see Desert varnish, May 2008 in Subjects: GIS and Remote Sensing). Cyanobacteria have long been suspected to have been the first life forms to adopt a terrestrial habit, and their cells have been discovered in the now-famous Neoproterozoic lagerstätten in the Doushantuo Formation of China (see The earliest lichens, May 2005 in Subjects: Geobiology, palaeontology, and evolution) The oldest un-metamorphosed sediments in Britain, the Torridonian redbeds that form the magnificent scenery of north-western Scotland, now push back the date of the earliest eukaryotic (cells with nuclei) terrestrial life, of which we are one form, half a billion years before the Doushanto cyanobacteria (Strother, P.K. et al. 2011. Earth’s earliest non-marine eukaryotes. Nature, v. 473, p. 505-509). The Torridonian is one of the thickest (~12 km) terrestrial sequences on the planet, and spans a time range of around 200 Ma (1.2 to 1 Ga). It is a repository of almost the entire range of humid continental sedimentary environments: colluvial fan; bajada; alluvial; deltaic and lacustrine build-ups. Grey lake-bed mudstones and phosphate nodules in the Torridonian yield small organic fossils lumped in the sack-term acritarchs. Similar bodies, whose affinities are diverse and generally obscure, have been reported from marine sediments as old as 3.2 Ga. The fascination of those from the Torridonian, other than their terrestrial association, is that some include aggregates of spherical cells with tantalising suggestions of central nuclei and, as a whole assemblage, exhibit a range of morphologies far beyond that of nucleus-free prokaryotes and the signature of cytoskeletal filaments that form a ‘scaffold’ for eukaryote cells. Worth noting is that one of the authors is Martin Brasier of Oxford University, whose meticulous bio-morphological skills in microscopy has made him one of the foremost critics of speculation on Precambrian  microfossils (see Doubt cast on earliest bacterial fossils April 2003 in Subjects: Geobiology, palaeontology, and evolution). The authors opine that the ecological diversity of freshwater and land systems, and the physico-chemical stress associated with repeated wetting and desiccation compared with the marine domain may have been instrumental in origination of the Eucarya, which should give the Torridonian a scientific reputation that extends beyond these shores.