Fracking check list

Bergung der Opfer des Grubenunglücks

Aftermath of the 1906 mine explosion at Courrières, northern France; the largest mining disaster in Europe with 1099 fatalities. Image via Wikipedia

Britain is on the cusp of a shale-gas boom (see Britain to be comprehensively fracked? : EPN 14 October 2011) and it is as well to be prepared for some potential consequences. In extensively fracked parts of the US – the states of New York, Pennsylvania, Texas and Colorado – there are reports of water taps emitting roaring flames after dissolved methane in groundwater ignites. This is largely due to common-place household water supplies from unprocessed groundwater, which are rare in Britain. But there are other hazards (Mooney, C. 2011. The truth about fracking. Scientific American, v. 305 (Nov 2011), p. 62-67) that have enraged Americans in affected areas, which are just as likely to occur in Britain. In fact the nature of shale-gas exploitation by horizontal drilling beneath large areas poses larger threats in densely populated area, as the people of Blackpool have witnessed in the form of small earthquakes that the local shale-gas entrepreneur Cuadrilla admit as side effects of their exploratory operations .

Chris Mooney succinctly explains the processes involved in fracking shale reservoirs; basically huge volumes of water laced with a cocktail of hazardous chemicals and sand being blasted into shales at high pressure to fracture the rock hydraulically and create pathways for natural gas to leak to the wells. One risk is that this water has to be recovered and stored in surface ponds for re-use. About 75% returns to the surface and also carries whatever has been dissolved from the shales, which can be extremely hazardous. By definition a shale containing hydrocarbons creates strongly reducing conditions, which in turn can induce several elements to enter solution as well as easily dissolved salts; for instance divalent iron (Fe2+) is highly soluble, whereas more oxidised Fe3+ is not, so waters having passed through gas-rich shales will be iron-rich. But that is by no means the worst possibility; one of the most common iron minerals in sedimentary rocks is goethite (FeOOH), which adsorbs many otherwise soluble elements and compounds. In reducing conditions goethite can break down to release its adsorbed elements, among which is commonly arsenic. The blazing faucet hazard results from hydrocarbon gases leaking through imperfectly sealed well casings to enter shallow groundwater, where the gases can also create reducing conditions and release toxic elements and compounds into otherwise pure groundwater by dissolution of ubiquitous goethite, as in the infamous arsenic crisis of Bangladesh and adjoining West Bengal in India where natural reducing conditions do the damage.

What is not mentioned in the Scientific American article is the common association of hydrogen sulfide gas with petroleum, produced from abundant sulfate ions in formation water by bacteria that reduce sulfate to sulfide in the metabolism. This ‘sour gas’, as it is known in the oil industry, is a stealthy killer: at high concentrations it loses its rotten-eggs smell and in the early days of the petroleum industry killed more oil workers than did any other occupational hazard. Visit the spa towns of Harrogate in Yorkshire and Strathpeffer in northern Scotland and sample their waters for examples of what Carboniferous and Devonian gas-rich shales produce quite naturally: noxious stuff of questionable efficacy. The environmental effects of such natural seepage from gas-rich rocks tell a cautionary tale as regards fracking. The highly reducing cocktail of hydrocarbon and sulfide gases in rising, mineral-rich formation water kills the microbiotic symbionts that are essential to plant root systems for nutrient uptake die and so too do trees. The onshore Solway Basin of Carboniferous age in NW England illustrates both points, having many chalybeate springs as the sulfide- and iron-rich waters are euphemistically known and also a strange phenomenon in many of the deep valleys cut by glacial melt waters as land rose following the last glacial maximum. Once trees reach a certain height – and correspondingly deep root systems – they die, to litter the valley woodland with large dead-heads.  Also leaves on smaller trees turn to their autumnal colours earlier than on higher ground. Both seem to be due to minor gas seepages from thick sale sequences in the depths of the sedimentary basin. Indeed, both are botanical indicators to the hydrocarbon explorationist.

To recap, a common size of a fracking operation using several horizontal wells driven from a single wellhead is 4km in diameter entering gas-rich shales at up to 2 km depth. Each well can generate fractures of a hundred metres or more in the shales and surrounding rocks, as they have to for commercial production. In Britain, most of the sites underlain by shales with gas potential are low-lying agricultural- or urban land. The producing rock in the Blackpool area is the Middle Carboniferous Bowland Shale that lies beneath the Coal Measures of what was formerly the Lancashire coalfield, now a patchwork of expanding urban centres. On 23 May 1984 an explosion occurred in Abbystead, Lancashire at an installation designed to pump winter flood water between the rivers Lune and Wyre through a tunnel beneath the Lower to Middle Carboniferous Bowland Fells. The Abbystead Disaster coincided with an inaugural demonstration of the pumping station to visitors, of whom 16 were killed and 22 injured. Methane had escaped from Carboniferous shales to build up in the flood-balancing  tunnel soon after its construction. Methane build-ups were by far the worst hazard throughout the history of British coal mining, thousands dying and being maimed as a result of explosions. One of the largest death tolls in British coal-mining history was 344 miners at Hulton Colliery in Westhoughton, Lancashire in 1910 after a methane explosion; the methane may well have escaped from the underlying Bowland Shales.

About these ads

2 responses to “Fracking check list

  1. Pingback: Fracking Firm Admits It Caused Earthquakes « 2012 The Awakening

  2. Pingback: Stuff we linked to on Twitter last week | Highly Allochthonous

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s