How far has geochemistry led geology?

 

Granite pmg ss 2006

Thin section of a typical granite: clear white and grey grains are quarts (silica); striped black and white is feldspar; coloured minerals are micas (credit: Wikipedia)

In the Solar System the Earth is unique in having a surface split into two distinct categories according to their relative elevation; one covered by water, the other not. More than 60% of its surface – the ocean basins – falls between 2 to 11 km below sea level with a mean around 4 to 5 km deep. A bit less than 40% – land and the continental shelves – stands higher than 1 km below sea level up to almost 9 km above, with a mean around 1 km high. Between 1 and 2 km below sea level is represented by only around 3 % of the surface area. This combined hypsography and wetness is reckoned to have had a massive bearing on the course of climate and biological evolution, as far as allowing our own emergence. The Earth’s bimodal elevation stems from the near-surface rock beneath each division having different densities: continental crust is less dense than its oceanic counterpart, and there is very little crustal rock with an intermediate density. Gravitational equilibrium ensures that continents rise higher than oceans. That continents were underpinned mainly by rocks of granitic composition and density, roughly speaking, was well known by geologists at the close of the 19th century. What lay beneath the oceans didn’t fully emerge until after the advent of plate tectonics and the notion of simple basaltic magmas pouring out as plates became detached.

In 1915 Canadian geologist Norman Levi Bowen resolved previously acquired knowledge of the field relations, mineralogy and, to a much lesser extent, the chemistry of igneous rocks, predominantly those on the continents in a theory to account for the origin of continents. This involved a process of distillation or fractionation in which the high-temperature crystallisation of mafic (magnesium- and iron-rich) minerals from basaltic magma left a residual melt with lower Mg and Fe, higher amounts of alkalis and alkaline earth elements and especially enriched in SiO2 (silica). A basalt with ~50% silica could give rise to rocks of roughly granitic composition (~60% SiO2) – the ‘light’ rocks that buoy-up the continental surface – through Bowen’s hypothetical fractional crystallisation. Later authors in the 1930s, including Bowen’s teacher Reginald Aldworth Daly, came up with the idea that granites may form by basalt magma digesting older SiO2-rich rocks or by partially melting older crustal rocks as suggested by British geologist Herbert Harold Read. But, of course, this merely shifted the formation of silica-rich crust further back in time

A great deal of field, microscope and, more recently, geochemical lab time has been spent since on to-ing and fro-ing between these hypotheses, as well as on the petrology of basaltic magmas since the arrival of plate theory and the discovery of the predominance of basalt beneath ocean floors. By the 1990s one of the main flaws seen in Bowen’s hypothesis was removed, seemingly at a stroke. Surely, if a basalt magma split into a dense Fe- Mg-rich cumulate in the lower crust and a less dense, SiO2-rich residual magma in the upper continental crust the bulk density of that crust ought to remain the same as the original basalt. But if the dense part somehow fell back into the mantle what remained would be more able to float proud. Although a neat idea, outside of proxy indications that such delamination had taken place, it could not be proved.

Since the 1960s geochemical analysis has became steadily easier, quicker and cheaper, using predominantly X-ray fluorescence and mass-spectrometric techniques. So geochemical data steadily caught up with traditional analysis of thin sections of rock using petrological microscopes. Beginning in the late 1960s igneous geochemistry became almost a cottage industry and millions of rocks have been analysed. Recently, about 850 thousand multi-element analyses of igneous rocks have been archived with US NSF funding in the EarthChem library. A group from the US universities of Princeton, California – Los Angeles and Wisconsin – Madison extracted 123 thousand plutonic and 172 thousand volcanic igneous rocks of continental affinities from EarthChem to ‘sledgehammer’ the issue of continent formation into a unified theory (Keller, C.B. et al. 2015. Volcanic-plutonic parity and the differentiation of the continental crust. Nature, v. 523, p. 301-307).

In a nutshell, the authors compared the two divisions in this vast data bank; the superficial volcanic with the deep-crustal plutonic kinds of continental igneous rock. The gist of their approach is a means of comparative igneous geochemistry with an even longer pedigree, which was devised in 1909 by British geologist Alfred Harker. The Harker Diagram plots all other elements against the proportionally most variable major component of igneous rocks, SiO2. If the dominant process involved mixing of basalt magma with or partial melting of older silica-rich rocks such simple plots should approximate straight lines. It turns out – and this is not news to most igneous geochemists with far smaller data sets – that the plots deviate considerably from straight lines. So it seems that old Bowen was right all along, the differing deviations from linearity stemming from subtleties in the process of initial melting of mantle to form basalt and then its fractionation at crustal depths. Keller and colleagues found an unexpected similarity between the plutonic rocks of subduction-related volcanic arcs and those in zones of continental rifting. Both record the influence of water in the process, which lowers the crystallisation temperature of granitic magma so that it freezes before the bulk can migrate to the surface and extrude as lava. Previously. rift-related magmas had been thought to be drier than those formed in arcs so that silica-rich magma should tend to be extruded.

But there is a snag, the EarthChem archive hosts only data from igneous rocks formed in the Phanerozoic, most being less than 100 Ma old. It has long been known that continental crust had formed as far back as 4 billion years ago, and many geologists believe that most of the continental crust was in place by the end of the Precambrian about half a billion years ago. Some even reckon that igneous process may have been fundamentally different before 3 billion years ago(see: Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. 2015. Emergence of modern continental crust about 3 billion years ago.  Nature Geoscience, v. 8, p.552–555). So big-science data mining may flatter to deceive and leave some novel questions unanswered .

 

Hallucigenia gets a head

The Middle Cambrian Burgess Shale of the Canadian Rockies is one of those celebrated sediments that show extraordinary preservation of soft-bodied and easily disarticulated organisms and rich assemblages of fossils. Being one of the earliest known of such lagerstätten, many of the denizens of the ecosystem in which the shale originated were at first regarded as members of hitherto undiscovered and now vanished phyla, the basal branches of the ‘tree of life’. Some certainly looked pretty odd, such as Opabina with a feeding apparatus looking similar to the extension nozzle of a vacuum cleaner; but that is clearly some kind of arthropod. Others turned out to be astonishingly large, once it was realised that parts of their broken bodies had previously been taken to be different organisms, an example being Anomalocaris. But perhaps the oddest, certainly to palaeontologists, was Hallucigenia. However, there are plenty of even more weird and wonderful living creatures, such as the sea pig, although modern creatures are more easily pigeonholed, taxonomically speaking.

Halucigenia as originally reconstruicted (i.e....

Hallucigenia as originally reconstructed; i.e. upside-down. (credit: Wikipedia)

The trouble with Hallucigenia was not so much its complexity – it was a fairly simple-looking beast – but that there were two choices as to which way up it lived; a feature that surprisingly led to a great deal of pondering that ended with the scientist who formally described it in 1977 making the wrong choice. That was eventually resolved fourteen years later, but the creature might also have inspired the Pushmi Pullyu in Hugh Lofting’s Dr Doolittle stories for children. Not that it resembled a unicorn-gazelle cross: far from it, for no-one could decide which its front was and which its backside, and even if it may have lain on its side. But Hallucigenia does demonstrate bilateral symmetry beautifully – it must have a front and back, and a top and bottom, even though which was which remained veiled in mystery – and so belongs to the dominant group of animals, imaginatively known as bilaterians.

The Burgess Shale lagerstätte seemingly was heaving with Hallucigenia so would-be taxonomists have had no shortage of specimens to ponder over in the 38 years since Simon Conway Morris made his dreadful mistake: of course, that was not of such enormity as Einstein’s ‘biggest blunder’ in the form of his cosmological constant, and Conway Morris quickly accepted his error when the beast was turned right-way-up in 1991. The problem is, exquisite as they are, Burgess Shale fossils are flattened and all that remains of mainly soft-bodied animals are delicate carbonaceous films, which need electron microscopy to unravel.

The latest reconstruction of Hallucigenia, by palaeontological illustrator Danielle Dufault (http://www.ddufault.com)

The latest reconstruction of Hallucigenia, by palaeontological illustrator Danielle Dufault

In 2015, Hallucigenia’s front end was definitely found and a great deal more besides by Canadian palaeontologists Martin Smith and Jean-Bernard Caron of the Royal Ontario Museum and the University of Toronto (Smith, M.R. & Caron J.-B. 2015. Hallucigenia’s head and the pharyngeal armature of early ecdysozoans. Nature, v. 523, p. 75-78). It has eyes, albeit rudimentary, and a throat, deep within which it has pointy teeth. Hallucigenia was a lobopod, whose living relatives lie within that large and diverse group the Ecdysozoa, which all have throat teeth and include the wondrous water bear (tardigrade) and the velvet- and penis worms (onychophores and priapulids, respectively) as well as lobsters, flies and woodlice. It may indeed have been close to the last common ancestor of all animals who moult their carapaces.

Picture of the month, June 2015

SpheroidalIMG_4815

Spheroidally weathered basalt from Turkey. (credit: Francisco Sousa)

Spheroidal weathering of lavas, easily confused with pillows, is also found in other homogeneous igneous rocks. It develops from rectilinear joint sets along which the groundwater responsible for breakdown of silicates initially moves. Hydration reactions begin along the joints but proceed most quickly at corners so that curved surfaces begin to develop. The concentric  banding that sometimes culminates in almost spherical relics may involve more than just rotting of anhydrous silicates as the reactions involve volume increases that encourage further rock fracturing. Other factors, such as elastic strain release may also encourage the characteristic concentricity Prolonged, intense chemical weathering leaves isolated, rounded corestones surrounded by saprolite, that can form boulder fields when the softer weathered material has been eroded away.

Are coral islands doomed by global warming?

Among the most voluble and persistent advocates of CO2 emissions reduction are representatives of islands in the tropics that are built entirely of reef coral. All the habitable land on them reaches only a few metres above high-tide level, so naturally they have more cause to worry about global warming and sea-level rise than most of us. Towns and villages on some atolls do seem to be more regularly inundated than they once were. So a group of scientists from New Zealand and Australia set out to check if there have been losses of land on one Pacific atoll, Funafuti, during the century since tidal observatories first recorded an average 1.7 mm annual rise in global sea level and a faster rate (~3 mm a-1) since 1993 (Kench, P.S. et al. 2015. Coral islands defy sea-level rise over the past century: Records from a central Pacific atoll. Geology, v. 43, p.515-518).

English: Funafuti (Tuvalu) from space Magyar: ...

Funafuti atoll (Tuvalu) from space (credit: Wikipedia)

Funafuti atoll comprises 32 islands that make up its rim, with a range of sizes, elevations, sediment build-ups and human modifications. The atoll was first accurately surveyed at the end of the 19th century, has aerial photographic cover from 1943, 1971 and 1984 and high-resolution satellite image coverage from 2005 and 2014, so this is adequate to check whether or not sea-level rise has affected the available area and shape of the habitable zone. It appears that there has been no increase in erosion over the 20th century and rather than any loss of land there has been a net gain of over 7%. The team concludes that coral reefs and islands derived from their remains and debris are able to adjust their size, shape and position to keep pace with sea level and with the effects of storms.

English: Looking west from a beach on Fongafal...

Beach on Fongafale Islet part of Funafuti Atoll, Tuvalu. (credit: Wikipedia)

This is an observation of just one small community in the vastness of the Pacific Ocean, so is unlikely to reassure islanders elsewhere who live very close to sea level and are anxious. It is a finding that bears out longer-term evidence that atolls remained stable during the major sea-level changes of the post-glacial period until about 7 thousand years ago when land glaciers stabilised. Since coral grows at a surprisingly rapid rate, that growth and the local redistribution of debris released by wave action keep pace with sea-level change; at least that taking place at rates up to 3 mm per year. But the study leaves out another threat from global warming. Corals everywhere are starting to show signs of ill thrift, partly resulting from increasing acidity of seawater as more CO2 dissolved in it and partly from increases in sea-surface temperature, as well a host of other implicated factors. This manifests itself in a phenomenon known as coral bleaching that may presage die-off. Should coral productivity decrease in the Pacific island states then the material balance shifts to land loss and sea level will begin an irresistible threat.

Flourishing life during a Snowball Earth period

That glacial conditions were able to spread into tropical latitudes during the late Neoproterozoic, Cryogenian Period is now well established, as are the time spans of two such events. http://earth-pages.co.uk/2015/05/21/snowball-earth-events-pinned-down/ But what were the consequences for life that was evolving at the time? That something dramatic was occurring is signalled by a series of perturbations in the carbon-isotope composition of seawater. Its relative proportion of 13C to 12C (δ13C) fell sharply during the two main Snowball events and at other times between 850 to 550 Ma. Since 12C is taken up preferentially by living organisms, falls in δ13C are sometimes attributed to periods when life was unusually suppressed. It is certain that the ‘excursions’ indicate that some process(es) must have strongly affected the way that carbon was cycled in the natural world.

English: Earth, covered in ice.

Artist’s impression of a Snowball Earth as it would appear with today’s continental configuration adjacent to the East Pacific Ocean. (Photo credit: Wikipedia)

The further sea ice extended beyond landmasses during Snowball events the more it would reduce the amount of sunlight reaching the liquid ocean and so photosynthesis would be severely challenged. Indeed, if ice covered the entire ocean surface – the extreme version of the hypothesis – each event must have come close to extinguishing life. An increasing amount of evidence, from climate- and oceanographic modelling and geological observation, suggests that a completely icebound Earth was unlikely. Nevertheless, such dramatic climate shifts would have distressed living processes to the extent that extinction rates were high and so was adaptive radiation of survivors to occupy whatever ecological niches remained or came into being: evolution was thereby speeded up. The roughly half-billion years of the Neoproterozoic hosted the emergence and development of multicellular organisms (metazoan eukaryotes) whose cells contained a nucleus and other bodies such as mitochondria and the chloroplasts of photosynthesisers. This hugely important stage of evolution burst forth shortly after – in a geological sense – the last Snowball event, during the Ediacaran and the Cambrian Explosion. But recent investigations by palaeontologists in glaciogenic rocks from China unearthed a rich diversity of fossil organisms that thrived during a Snowball event (Ye, Q. et al. 2015. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology, v. 43, p. 507-510).

The Nantuo Formation in southern China contains glaciogenic sedimentary rocks ascribed to the later Marinoan glaciation (640 to 635 Ma). Unusually, the pebbly Nantuo glaciogenic rocks contain thin layers of siltstones and black shales. The fact that these layers are free of coarse fragments that floating ice may have dropped supports the idea that open water did exist close to glaciated landmasses in what is now southern China. Palaeomagnetic measurements show that the area was at mid-latitudes during the Marinoan event. The really surprising feature is that they contain abundant, easily visible fossils in the form of carbonaceous ribbons , disks, branching masses and some that dramatically resemble complex multi-limbed animals, though they are more likely to be part of an assemblage of algal remains. Whatever their biological affinities, the fossils clearly signify that life happily flourished beneath open water where photosynthesis provided a potential base to a food chain, though no incontrovertible animals occur among them.

See also: Corsetti, F.A. 2015. Live during Neoproterozoic Snowball Earth. Geology, v. 43, p. 559-560.

Two happy events for plate tectonics

In an era where fears of rising sea level and loss of land are growing it is a great pleasure to announce (albeit several years late) the birth of two new islands. They emerged close to the axis of the Red Sea in Yemeni territory as new members of the volcanic Zubair Islands during episodic eruptions that began on 18 December 2011. First to form was dubbed Sholan (‘One who is Blessed’ in Arabic – a girl’s name), which ceased to be active a month later. Further submarine volcanism began on 28 September 2013, with another island, Jadid (‘New’ in Arabic – a boy’s name), breaking surface in October 2013. The double event has been described in great detail by geoscientists based at King Abdullah University of Science and Technology, Saudi Arabia (Xu, W. 2015. Birth of two volcanic islands in the southern Red Sea. Nature Communications, DOI: 10.1038/ncomms8104. After rapid growth during their initial eruptive phases both islands underwent significant marine erosion once quiescent, but seem set to remain as part of the Zubair archipelago.

'Before and after' images of the Zubair archipelago in the southern Red Sea. (Left from Bing maps, right (February 2014) from Google Earth)

‘Before and after’ images of the Zubair archipelago in the southern Red Sea. (Left from Bing maps, right (February 2014) from Google Earth)

Analysis of small earthquakes that happened during the islands’ growth together with Interferometric iradar surveys that showed coincident ground movements among the islands suggest that both eruptions took place along an active north-south fracture system, probably part of axial rifting system of the Red Sea. In more detail, magma seems to have moved upwards along N-S fissures similar to those that now show up as dykes cutting lavas on the older islands in the area. The local fracture patterns are oblique to the main Red Sea Rift that trends NNW-SSE, possibly as a result of non-linear stress trajectories in the Arabia-Africa rifting. In almost all respects the volcanism and mechanism of intrusion and effusion closely resemble that reported recently from a terrestrial setting in the nearby Afar Depression. The slow spreading Red Sea Rift rarely manifests itself by volcanism, so these events reveal a previous unsuspected zone of active melting in the mantle beneath the Zubair archipelago.

Stone tools go even further back

Shortly after it seemed that the maker of the earliest stone tools (2.6 Ma) may have been Australopithecus africanus, thanks to a novel means of analyzing what hominin hands may have been capable of, some actual tools have turned up from even earlier times (Harmand, S. and 20 others 2015. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, v. 521, p. 310-315). Their age is comparable with that (3.4 Ma) of animal bones from Dikika, Ethiopia showing cut marks and signs of deliberate breaking, which had previously been controversial as they suggested that local Australopithecus afarensis of a similar age had made them. What the authors claim to be ‘a new beginning to the known archaeological record’ almost a million years earlier than the first appearance of Homo fossils in the Lake Turkana area seems to point in that direction. But A. afarensis has not been found in that area, although a hominin known as Kenyanthropus platyops with roughly the same age as the tools has.

Australopithecus afarensis reconstruction

Reconstruction of Australopithecus afarensis (Photo credit: Wikipedia)

Almost 150 fine-grained basaltic artefacts turned up at the Lomekwi site, which may have been where knappers habitually worked as many of them were fragments or debitage. The cores from which flakes had been struck are large, weighing on average 3.1 kg. It seems that the tool makers may have been forcefully pounding out edged tools for a variety of uses, unlike the single-use hammer stones used by chimpanzees today. Compared with the well known Oldowan tools, however, these are cruder and made by a different knapping technique that seems not to have focused on exploiting the conchoidal fracturing that produces the sharpest tools and is a feature of the later Oldowan tools.

English: Chopper: one of the earliest examples...

Oldowan ‘chopper’ from Melka Kunture, Ethiopia. (credit: Wikipedia)

Frederick Engels, whose 1876 essay The Part played by Labour in the Transition from Ape to Man was among the first works to take Darwin’s ideas on human origins forward, would have had a field day with the new evidence. For him the vital step was freeing of the hands by a habitual bipedal gait and their manipulation of objects – together with changes to the hands that would arise by such a habit. What the first tool maker looked like, doesn’t really matter: the potential that act conferred was paramount. Nevertheless, there is a big step between early hominins and humans, from relatively small brains to those of H. erectus that were on the way to modern human capacity. The Lomekwi tools and the improved Oldwan artefacts spanned 1.7 Ma at least before H. erectus revolutionised manufacture to produce the bi-facial Acheulian hand ‘axe’, and going beyond that took almost a million years of little change in both tools and anatomy until the emergence of archaic modern humans.

Note added 28 May 2015: Within a week palaeoanthropologists’ focus shifted to the Afar Depression in Ethiopia where a new species of hominin has emerged from Pliocene sediments dated to between 3.3 and 3.5 Ma (Haile-Selassie, Y et al. 2015. New species from Ethiopia expands Middle Pliocene hominin diversity. Nature, v. 521, p. 483-488. doi:1038/nature14448). Australopithecus deyiremeda is represented by fragments of two lower- and one upper jaw plus several other lower facial specimens. So the species is differentiated from other hominins by dentition alone, but that is unmistakably distinct from extensive data on Au. afarensis which lived within a few kilometres over the same period. Until the last 15 to 20 years it was thought that Au. afarensis was the sole hominin around in the Middle Pliocene of East and Central Africa, but now it seems there may have been as many as five, the three mentioned above, plus Au. bahrelghazali from Chad and an as yet undesignated fossilised foot from Afar. For possibly three closely related species to coexist in Afar is difficult to understand: possibly they occupied different niches in the local food web or employed different strategies (Spoor, F. 2015. The middle Pliocene gets crowded. Nature, v. 521, p. 432-433). Another question is: did they all make and use tools? For the Lomekwi tools K. platyops is a candidate, but for the cut marks on bones at Dikika in Afar there are at least two: Au. afarensis and Au. deyiremeda. So multiple tool makers living at the same time suggests some earlier originator of the ‘tradition’.

Note added 4 June 2015: Add southern Africa into the equation and there is yet more breaking news about coeval hominin diversity. US, Canadian, South African and French collaborators have finally started to resolve the achingly complex stratigraphy of the fossil-rich Sterkfontein cave deposits in South Africa by using a novel approach to estimating ages of materials’ last exposure to cosmic rays (Granger, D.E. et al. 2015. New Cosmogenic burial ages for Sterkfontein member 2 Australopithecus and Member 5 Oldowan. Nature, v. 522, p. 85-88). Specifically, they managed to date the tumbling into a deep sinkhole of a recently found, almost complete skeleton of an australopithecine. It still resembles no other some 70 years after a less complete specimen was found by Raymond Dart in the mid 1940s. It was first informally dubbed ‘Little Foot’ and then Au. prometheus and up to now has been regarded as an odd contemporary of 2.2 Ma old Au. africanus. The new dating gives an age of about 3.7 Ma: so at least 6 hominids occupied Africa in the Middle Pliocene. It is beginning to look like a previously unsuspected time of sudden diversification.

A certain shyness about research misconduct in the UK

Since Earth Pages was launched at the start of the 21st century there have been highly publicised cases of gross misconduct by researchers, including plagiarism, ‘massaging ‘data and even sabotaging the work of others, as well as lesser cases where publications were withdrawn or removed from journals. The most notorious have been from the USA, Japan, the Netherlands and a number of other advanced countries. But sharp practices in science are not well known in the UK; indeed I can’t recollect more than one case that reached the same degree of coverage as the most notorious instances. Yet, in 2009, Daniele Fanelli of the University of Edinbugh reported the results of her analysis of accessible information from the UK about this matter. She found that about 2% of British scientists, who had been interviewed or answered questionnaires, answered ‘Yes’ when asked if they ever fabricated or falsified research data, or if they altered or modified results to improve the outcome. Up to one third admitted other questionable practices or knew of them having been committed by colleagues. Fanelli doesn’t refer to more grievous matters such as sabotage or exploitation of students’ work.

The silence from British Universities on research misconduct has become such an embarrassment that it was a subject of an Editorial and a News In Focus Report in the 21 May issue of Nature . While there are guidelines that urge British universities to publish annual reports of their investigations into misconduct, for 2013-14 only 12 such reports have been published : of the 88 universities contacted by the informal UK Research Integrity Office, 30 institutions responded to UKRIO’s survey. These reports covered 21 investigations, mostly unspecified, with 5 cases of plagiarism, 2 of falsification, 2 concerning authorship, 1 of fabrication and 1 breach of confidentiality. Three were upheld and 3 are pending.

These figures speak loudly for themselves: misconduct by researchers (and academics in general) is something that the halls of British academe ‘dinnae care to speak aboot’. As the author of UKRIO’s survey observed, ‘It’s just not credible’, although many of the universities that she contacted claim that such reports were in progress. A likely story… We all know that the ‘filthy snout’ (Tom Wolfe The Bonfire of the Vanities) does ‘come popping to the surface’, but is buried in confidentiality by university Research Committees, leaving any victims dangling in a sorry psychological state and allowing journals’ peer review system to catch any perpetrators before they reach the press, which it is rarely able to do. It takes a case as severe as that of Andrew Wakefield’s fraudulent 1998 paper in the Lancet associating the MMR vaccine with autism to see justice done.

Snowball Earth events pinned down

The Period that lasted from 850 to 635 million years ago, the Cryogenian, takes its name from evidence for two and perhaps three episodes of glaciation at low latitudes. It has been suggested that, in some way, they were instrumental in the decisive stage of biological evolution from which metazoan eukaryotes emerged: the spectacular Ediacaran fossil assemblages follow on the heels of the last such event Although controversies about the reality of tropical latitudes experiencing ice caps have died away, there remains the issue of synchronicity of such frigid events on all continents, which is the central feature of so-called ‘Snowball Earth’ events. While each continent does reveal evidence for two low latitude glaciations – the Sturtian (~710 Ma) and the later Marinoan (~635 Ma) – in the form of diamictites (sediments probably dropped from floating ice and ice caps) it has proved difficult to date their start and duration. That is, the cold episodes may have been diachronous – similar conditions occurring at different localities at different times. Geochronology has, however, moved on since the early disputes over Snowball Earths and more reliable and precise dates for beginnings and ends are possible and have been achieved in several places (Rooney, A.D. et al. 2015. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology, v. 43, p. 459-462).

One computer simulation of conditions during a...

Computer simulation of conditions during a Snowball Earth period. (credit: Macmillan Publishers Ltd: Hyde et al., Nature 405:425-429, 2000)

Rooney and colleagues from Harvard and the University of Houston in the USA used rhenium-osmium radiometric dating in Canada, Zambia and Mongolia. The Re-Os method is especially useful for sulfide minerals as in the pyritic black shales that occur extensively in the Cryogenian, generally preceding and following the glacial diamictites and their distinctive carbonate caps. Combined with a few ages obtained by other workers using the Re-Os method and U-Pb dating of volcanic units that fortuitously occur immediately beneath or within diamictites, Rooney et al. establish coincident start and stop dates and thus durations of both the Sturtian and Marinoan glacial events: 717 to 660 Ma and 640 to 635 Ma respectively on all three continents. Their data is also said to refute the global extent and even the very existence of an earlier, Kaigas glacial event (~740 Ma) previous recorded from diamictites in Namibia, the Congo, Canada and central Asia. This assertion is based on the absence of diamictites with that age in the area that they studied in Canada and their own dating of a diamictite in Zambia, which is one that others assigned to the Kaigas event

The dating is convincing evidence for global glaciation on land and continental margins in the Cryogenian, as all the dates are from areas based on older continental crust. But the concept of Snowball Earth, in its extreme form, is that the oceans were ice-capped too as the name suggests, which remains to be convincingly demonstrated. That would only be achieved by suitably dated diamictites located on obducted oceanic crust in an ophiolite complex. Moreover, there are plenty more Cryogenian diamictites on other palaeo-continents and formed at different palaeolatitudes that remain to be dated (see here)

Earthquake hazard news

Assessments of seismic risk have relied until recently on records of destructive earthquakes going back centuries and their relationship to tectonic features, mainly active faults. They usually predict up to 50 years ahead. The US Geological Survey has now shifted focus to very recent records mainly of small to medium tremors, some of which have appeared in what are tectonically stable areas as well as the background seismicity in tectonically restless regions. This enables the short-term risk (around one year) to be examined. To the scientists’ surprise, the new modelling completely changes regional maps of seismic risk. The probabilities in the short-term of potentially dangerous ground movements in 17 oil- and gas-rich areas rival those in areas threatened by continual, tectonic jostling, such as California. The new ‘hot spots’ relate to industrial activity, primarily the disposal of wastewater from petroleum operations by pumping it into deep aquifers.

USGS map highlighting short-term earthquake risk zones. Blue boxes indicate areas with induced earthquakes (source: US Geological Survey)

USGS map highlighting short-term earthquake risk zones. Blue boxes indicate areas with induced earthquakes (source: US Geological Survey)

Fluid injection increases hydrostatic pressure in aquifers and also in the spaces associated with once inactive fault and fracture systems. All parts of the crust are stressed to some extent but the presence of fluids and over-pressuring increases the tendency for rock failure. While anti-fracking campaigners have focussed partly on seismic risk – fracking has caused tremors around magnitudes 2 to 3 – the process is a rapid one-off injection involving small fluid volumes compared with petroleum waste-water disposal. All petroleum production carries water as well as oil and gas to wellheads. Coming from great depth it is formation water held in pores since sedimentary deposition, which is environmentally damaging because of its high content of dissolved salts and elevated temperature. Environmental protection demands that disposal must return it to depth.

The main worry is that waste water disposal might trigger movements with magnitudes up to 7.0: in 2011 a magnitude 5.6 earthquake hit a town in oil-producing Oklahoma and damaged many buildings. Currently, US building regulations rely on earthquake risk maps that consider a 50-year timescale, but they take little account of industrially induced seismicity. So the new data is likely to cause quite a stir. These are changing times, however, as the oil price fluctuates wildly. So production may well shift from field to field seeking sustainable rates of profit, and induced seismicity may well change as a result.

None of these areas are likely to experience the horrors of the 25 April 2015 magnitude 7.8 earthquake in Nepal. However, it also occurred in an area expected to be relatively stable compared with the rest of the Himalayan region. The only previous major tremor there was recorded in the 14th century. This supposedly ‘low-risk’ area overlies a zone in which small tremors or microearthquakes occur all the time. Such zones – and this one extends along much of the length of the Himalaya – seem to mark where fault depths are large enough for displacements to take place continually by plastic flow, thereby relieving stresses. Most of the large earthquakes have taken place south of the microseismic zone where the shallow parts of the Indian plate are brittle and have become locked. The recent event is raising concerns that it is a precursor of further large earthquakes in Nepal. Its capital Kathmandu is especially susceptible as it is partly founded on lake sediments that easily liquefy.

Note added: 13 May 2015. Nepal suffered another major shock (magnitude 7.3) on 12 May in the vicinity of Mount Everest. It too seems to have occurred in the zone of microearthquakes formerly thought to mark a zone where the crust fails continually bu plastic deformation thereby relieving stresses. Kathmandu was this time at the edge of the shake zone