Trapping Martian life forms

No matter how optimistic exobiologists might be, the current approaches to discovering whether or not Mars once hosted life or, the longest shot of all, still does are almost literally hit or miss. First the various teams involved try to select a target area using remotely sensed data to see if rocks or regolith have interacted with water; generally from the presence or absence of clay minerals and /or sulfates that hydrous alteration produces on Earth. Since funding is limited the sites with such ingredients are narrowed down to the ‘best’ – in the case of NASA’s Curiosity rover to Gale Crater  where a thick sequence of sediments shows occasional signs of clays and sulfates. But a potential site must also be logistically feasible with the least risk of loss to the lander. Even then, all that can be achieved in existing and planned mission is geochemical analysis of drilled and powdered samples. Curiosity’s ambition is limited to assessing whether the conditions for life were present. Isotopic analysis of any carbon content to check for mass fractionation that may have arisen from living processes is something for a future ESA mission.

Neither approach is likely to prove the existence now or in far-off times of Martian life, though scientists hope to whet the appetite of those holding the purse strings. Only return of rock samples stands any realistic chance of giving substance to the dreams of exobiologists. But what to collect? A random soil grab or drill core is highly unlikely to provide satisfaction one way or the other. Indeed only incontrovertible remains of some kind of cellular material can slake the yearning. Terrestrial materials might provide a guide to (probably) robotic collectors. Kathleen Benison and Francis Karmanocky of West Virginia University have followed this up by examining sulfates from one of the least hospitable places on Earth; the salt flats of the high Andes of Chile (Benison, K.C. & Karmanocky, F.J. 2014. Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology, v. 42, p. 615-618).

Evaporite minerals from Andean salars precipitated from extremely acidic and highly saline lake water originating from weathering of surrounding volcanoes. Oddly few researchers have sought cellular life trapped in crystals of salt or gypsum, the two most common minerals in the high-elevation salt pans. Fluid inclusions in sedimentary halite (NaCl) crystals from as far back as the Triassic are known to contain single-celled extremophile prokaryotes and eukaryotes, but gypsum is more likely to be found on Mars. Benison and Karmanocky document a variety of cellular material from Chilean gypsum that has been trapped in the solid mineral itself or in fluid inclusions. This is the most likely means of fossilisation of Martian life forms, if they ever existed. The salar gypsum contain cells that can be cultured and thereby revived since several species can remain dormant for long periods. The authors suggest that transparent cleavage fragments of Martian gypsum could be examined at up to 2000x magnification on future Mars landers. Finding convincing cells would see dancing in exobiology labs, and what if they should move…

Fieldwork and geological education

In March 2013 EPN carried an item connected with the abandonment of field training at week-long summer schools by the UK’s Open University. After 40 years of geoscientific summer schools connected with courses at Levels-1, -2 and -3 anonymous performance statistics were available for thousands of students who had studied those OU Earth Science courses that offered summer-school experiences in the field, first as compulsory modules (1971-2001) then as an optional element (2002-2011) and finally with no such provision. The March 2013 item compared statistics for the three kinds of provision. It should be noted that the OU once had possibly the world’s largest throughput of degree-level geoscience students for a single higher educational institution.

After 2001, pass rates feel abruptly and significantly; in the Science Foundation Course the rate fell from an annual average of 69 to 54%, and in level-2 Geology from 65 to 55%. This was accompanied by a significant decrease in enrolment in equally and more popular geoscience courses that had never had a summer school element. The second statistical drop was of the order of 30 to 40%. It seemed that residential schools played a vital role in boosting confidence and reinforcing home studies, as well as transferring practical field skills. After further falls in enrolment since summer schools were removed from the curriculum in 2012, the OU is in the process of completely revising its geoscientific courses and attempting to substitute virtual, on-line field and lab ‘experiences’. Time will tell if it ever manages to reach its former level of success and acceptance

So, discovering that The Geological Society of America had surveyed attendees at its Annual Meetings (Petcovic, H.L. et al. 2014. Geoscientists’ perceptions of the value of undergraduate field education. GSA Today, v. 24 (July 2014), p. 4-10) piqued my interest. Almost 90% of those polled agreed that field studies should be a fundamental requirement of undergraduate programmes; very few agreed that becoming an expert geoscientist is possible without field experience. Field courses develop the skills and knowledge specific to ‘doing’ geoscience; teach integration of fundamental concepts and broaden general understanding of them; inculcate cooperation, time management and independent thinking that have broader applications. Fieldwork also has personal and emotional impacts: reinforcing positive attitudes to the subject; creating a geoscientific esprit de corps; helping students recognise their personal strengths and limitations. Then there is the aspect of enhanced employability, highlighted by all categories of respondents.

Set against these somewhat predictable sentiments among geoscientists are the increasing strains posed by cost, time commitment, and liability, as well as the fact that some potential students do not relish outdoor pursuits. Yet overall the broad opinion was that degree programmes should involve at least one field methods course as a requirement, with other non-compulsory opportunities for more advanced field training

Mass extinctions’ connections with volcanism: more support

Plot the times of peaks in the rates of extinction during the Mesozoic against those of flood basalt outpourings closest in time to the die-offs and a straight line can be plotted through the data. There is sufficiently low deviation between it and the points that any statistician would agree that the degree of fit is very good. Many geoscientists have used this empirical relationship to claim that all Mesozoic mass extinctions, including the three largest (end-Permian, end-Triassic and end-Cretaceous) were caused in some way by massive basaltic volcanism. The fact that the points are almost evenly spaced – roughly every 30 Ma, except for a few gaps – has suggested to some that there is some kind of rhythm connecting the two very different kinds of event.

Major extinctions and flood basalt events during the Mesozoic (credit: S Drury)

Major extinctions and flood basalt events during the Mesozoic (credit: S Drury)

Leaving aside that beguiling periodicity, the hypothesis of a flood-basalt – extinction link has a major weakness. The only likely intermediary is atmospheric, through its composition and/or climate; flood volcanism was probably not violent. Both probably settle down quickly in geological terms. Moreover, flood basalt volcanism is generally short-lived (a few Ma at most) and seems not to be continuous, unlike that at plate margins which is always going on at one or other place. The great basalt piles of Siberia, around the Central Atlantic margins and in Western India are made up of individual thick and extensive flows separated by fossil soils or boles. This suggests that magma blurted out only occasionally, and was separated by long periods of normality; say between 10 and 100 thousand years. Evidence for the duration of major accelerations, either from stratigraphy and palaeontology or from proxies such as peaks and troughs in the isotopic composition of carbon (e.g. EPN Ni life and mass extinction) is that they too occurred swiftly; in a matter of tens of thousand years. Most of the points on the flood-basalt – extinction plot are too imprecise in the time dimension to satisfy a definite relationship. Opinion has swung behind an instantaneous impact hypothesis for the K-P boundary event rather than one involving the Deccan Traps in India, simply because the best dating of the Deccan suggests extinction seems to have occurred when no flows were being erupted, while the thin impact-related layer in sediments the world over is exactly at the point dividing Cretaceous flora and fauna from those of the succeeding Palaeogene.

Yet no such link to an extraterrestrial factor is known to exist for any other major extinctions, so volcanism seems to be ‘the only game in town’ for the rest. Until basalt dating is universally more precise than it has been up to the present the case is ‘not proven’; but, in the manner of the Scottish criminal law, each is a ‘cold case’ which can be reopened. The previous article  hardens the evidence for a volcanic driver behind the greatest known extinction at the end of the Permian Period. And in short-order, another of the Big Five seems to have been resolved in the same way. A flood basalt province covering a large area of west and north-west Australia (known as the Kalkarindji large igneous province)has long been known to be of roughly Cambrian age but does it tie in with the earliest Phanerozoic mass extinction at the Lower to Middle Cambrian boundary? New age data suggests that it does at the level of a few hundred thousand years (Jourdan, F. et al. 2014. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early-Middle Cambrian (Stage 4-5) extinction. Geology, v. 42, p. 543-546). The Kalkarindji basalts have high sulfur contents and are also associated with widespread breccias that suggest that some of the volcanism was sufficiently explosive to have blasted sulfur-oxygen gases into the stratosphere; a known means of causing rapid and massive climatic cooling as well as increasing oceanic acidity. The magma also passed through late Precambrian sedimentary basins which contain abundant organic-rich shales that later sourced extensive petroleum fields. Their thermal metamorphism could have vented massive amounts of CO2 and methane to result in climatic warming. It may have been volcanically-driven climatic chaos that resulted in the demise of much of the earliest tangible marine fauna on Earth to create also a sudden fall in the oxygen content of the Cambrian ocean basins.

Nickel, life and the end-Permian extinction

The greatest mass extinction of the Phanerozoic closed the Palaeozoic Era at the end of the Permian, with the loss of perhaps as much as 90% of eukaryote diversity on land and at sea. It was also over very quickly by geological standards, taking a mere 20 thousand years from about 252.18 Ma ago. There is no plausible evidence for an extraterrestrial cause, unlike that for the mass extinction that closed the Mesozoic Era and the age of dinosaurs. Almost all researchers blame one of the largest-ever magmatic events that spilled out the Siberian Traps either through direct means, such as climate change related to CO2, sulfur oxides or atmospheric ash clouds produced by the flood volcanism or indirectly through combustion of coal in strata beneath the thick basalt pile. So far, no proposal has received universal acclaim. The latest proposal relies on two vital and apparently related geochemical observations in rocks around the age of the extinctions (Rothman, D.H. et al. 2014. Methanogenic burst in the end-Permian carbon cycle. Proceedings of the National Academy of the United States, v. 111, p. 5462-5467).

Siberian flood-basalt flows in Putorana, Taymyr Peninsula. (Credit: Paul Wignall; Nature http://www.nature.com/nature/journal/v477/n7364/fig_tab/477285a_F1.html)

Siberian flood-basalt flows in Putorana, Taymyr Peninsula. (Credit: Paul Wignall; Nature http://www.nature.com/nature/journal/v477/n7364/fig_tab/477285a_F1.html)

In the run-up to the extinction carbon isotopes in marine Permian sediments from Meishan, China suggest a runaway growth in the amount of inorganic carbon (in carbonate) in the oceans. The C-isotope record from Meishan shows episodes of sudden major change (over ~20 ka) in both the inorganic and organic carbon parts of the oceanic carbon cycle. The timing of both ‘excursions’ from the long-term trend immediately follows a ‘spike’ in the concentration of the element nickel in the Meishan sediments. The Ni almost certainly was contributed by the massive outflow of basalt lavas in Siberia. So, what is the connection?

Some modern members of the prokaryote Archaea that decompose organic matter to produce methane have a metabolism that depends on Ni, one genus being Methanosarcina that converts acetate to methane by a process known as acetoclastic methanogenesis. Methanosarcina acquired this highly efficient metabolic pathway probably though a sideways gene transfer from Bacteria of the class Clostridia; a process now acknowledged as playing a major role in the evolution of many aspects of prokaryote biology, including resistance to drugs among pathogens. Molecular-clock studies of the Methanosarcina genome are consistent with this Archaea appearing at about the time of the Late Permian. A burst of nickel ‘fertilisation’ of the oceans may have resulted in huge production of atmospheric methane. Being a greenhouse gas much more powerful than CO2, methane in such volumes would very rapidly have led to global warming. Before the Siberian Traps began to be erupted nickel would only have been sufficiently abundant to support this kind of methanogen around ocean-floor hydrothermal springs. Spread globally by eruption plumes, nickel throughout the oceans would have allowed Methanosarcina or its like to thrive everywhere with disastrous consequences. Other geochemical processes, such as the oxidation of methane in seawater, would have spread the influence of the biosphere-lithosphere ‘conspiracy’. Methane oxidation would have removed oxygen from the oceans to create anoxia that, in turn, would have encouraged other microorganisms that reduce sulfate ions to sulfide and thereby produce toxic hydrogen sulfide. That gas once in the atmosphere would have parlayed an oceanic ‘kill mechanism’’ into one fatal for land animals.

There is one aspect that puzzles me: the Siberian Traps probably involved many huge lava outpourings every 10 to 100 ka while the magma lasted, as did all other flood basalt events. Why then is the nickel from only such eruption preserved in the Meishan sediments, and if others are known from marine sediments is there evidence for other such methanogen ‘blooms’ in the oceans?

What’s happening at the core-mantle boundary?

The lithosphere that falls into the mantle at subduction zones must end up somewhere in the deep Earth; the question is, where and what happens to it. There are hints from seismic tomography of the mantle that such slabs penetrate as deep as the boundary between the lowermost mantle and the molten outer core. The lithosphere’s two components, depleted mantle and oceanic crust, are compositionally quite different, being peridotitic and basaltic, so each is likely to be involved different petrological processes. As regards the physics, since seismic activity ceases below a depth of about 700 km neither entity behaves in a brittle fashion in the lower mantle. Such ductile materials might even pile up in the manner of intestines on the lithological equivalent of the abattoir floor; Bowels of the Earth as John Elder had it in his book of the same name.

Sketch of the lower 1000 km of the Earth’s mantle (credit: Williams, Q. 2014. Deep mantle matters. Science, v. 344, p. 800-801)

Pressure would make these recycled components mineralogically different, as indeed a relative light squeeze does in the upper mantle, where cold wet basalts become dry and denser eclogites thereby pulling more lithosphere down Wadati and Benioff’s eponymous zones to drive plate tectonics. Decades old experiments at lower-mantle pressures suggest that mantle minerals recompose from olivine with a dash of pyroxene to a mixture of more pressure-resistant iron-magnesium oxide and perovskite ((Mg,Fe)SiO3). Experiments in the early 21st century, under conditions at depths below 2600 km, revealed that perovskite transforms at the very bottom of the mantle (the D” zone) into layers of magnesium plus iron, silicon and oxygen. This is provisionally known as ‘post-perovskite’. The experiments showed that the transition releases heat. So, should oceanic lithosphere descend to the D” zone, it would receive an energy ‘kick’ and its temperature would increase. Conversely, if D”-zone materials rose to the depth of the perovskite to post-perovskite transition they would become less dense: a possible driver for deep-mantle plumes.

Now a new iron-rich phase stable in the bottom 1000 km of the mantle has emerged from experiments, seeming to result from perovskite undergoing a disproportionation reaction (Zhang, L. And 11 others 2014. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep mantle. Science, v. 344, p. 877-882). In the same issue of Science other workers using laser-heated diamond anvils have revealed that, despite the huge pressures, basaltic rock may melt at temperatures considerably below the solid mantle’s ambient temperature (Andrault, D. et al. 2014. Melting of subducted basalt at the core-mantle boundary. Science, v. 344, p. 892-895). Both studies help better understand the peculiarities of the deepest mantle that emerge from seismic tomography (Williams, Q. 2014. Deep mantle matters. Science, v. 344, p. 800-801).

Huge blocks with reduced S-wave velocities that rise above the D” zone sit beneath Africa and the Pacific Ocean. There are also smaller zones at the core-mantle boundary (CMB) with shear-wave velocities up to 45% lower than expected. These ultralow-velocity zones (ULVZs) probably coincide with melting of subducted oceanic basalts, but the magma cannot escape by rising as it would soon revert to perovskite. Yet, since ultramafic compositions cannot melt under such high pressures the ULVSs indirectly show that subduction does descend to the CMB. Seismically defined horizontal layering in the D” zone thus may result from basaltic slabs whose ductility has enabled them to fold like sheets of lasagne as the reach the base of the mantle. Development of variants of the laser-heated diamond anvil set-up seem likely to offer insights into our own world’s ‘digestive’ system at a far lower cost and with vastly more relevance than the growing fad for speculating on Earth-like planets that the current ‘laws’ of physics show can never be visited and on ‘exobiology’ that cannot proceed further than the extremes of the Earth’s near-surface environment and the DNA double helix.

Image

Year Zero: the giant-impact hypothesis

On close examination, the light-coloured Highlands of the Moon look remarkably like an old sign by a North American road through hunting country: they are pocked by impact craters of every size. More than that, a lengthy period of bombardment is signified by signs that the craters themselves are cratered to form a chaotic landscape dominated by interlocking and overlapping circular feature. In contrast the dark basaltic plains, called maria (seas), are pretty smooth albeit with some craters. They are clearly much younger than the Highlands. The discovery by Apollo astronauts that the older lunar Highlands are made almost exclusively of calcic plagioclase feldspar was a major surprise, requiring an astonishing event to explain them. Such anorthosites may form by flotation of low-density feldspar from a cooling and crystallising basaltic magma. Yet to form the bulk of the Moon’s early crust from such materials requires not simply a deep magma chamber, but literally an ocean of molten material at least 200 km deep. The anorthosites also turned out to be far older than the oldest rocks on Earth, close to 4.5 billion years. The most likely explanation seemed to be that the melting resulted from a gargantuan collision between two protoplanets, the Earth’s forebear and another now vanished. This would have melted and partially vaporised both bodies. After this discovery the Moon was widely believed to have formed from liquid and vaporised rock flung into orbit around what became the Earth.

Artist’s depiction of a collision between two planetary bodies likely to have formed the Moon (Credit: Wikipedia)

Such a catastrophic model for joint formation of the Earth and Moon shortly after planets of the Solar System had formed is hard to escape, but it carries two major puzzles. First, Earth and Moon seem to have very similar, indeed almost the same chemistry: So what happened to the colliding planet? If it had been identical in composition to the proto Earth there is no problem, but a different composition would surely have left some detectable trace in a Moon-Earth geochemical comparison. Initial models of the collision suggested that the other planet (dubbed Theia) was about the size of Mars and should have contributed 70 to 90% of the lunar mass: the Moon-Earth geochemical difference should have been substantial The second issue raised in the early days of the hypothesis was that since the Moon seemed to be almost totally dry (at least, the first rock analyses suggested that), then how come the Earth had retained so much water?

For decades, after an initial flurry of analyses, the Apollo samples remained in storage. Only in the last 10 years or so, when the need to gee-up space exploration required some prospect of astronauts one more to be sent beyond Earth orbit, have the samples been re-examined. With better analytical tools, the first puzzle was resolved: lunar rocks do contain measurable amounts of water, so the impact had not entirely driven off volatiles from the Moon. The bulk geochemical similarity was especially puzzling for the isotopes of oxygen. Meteorites of different types are significantly ear-marked by their relative proportions of different oxygen isotopes, signifying to planetary scientists that each type formed in different parts of the early Solar System; a suggestion confirmed by the difference between those in meteorites supposedly flung from Mars and terrestrial oxygen isotope proportions. A clear target for more precise re-examination of the lunar samples, plus meteorites reckoned to have come from the Moon, is therefore using vastly improved mass spectrometry to seek significant isotopic differences (Harwartz, D. et al. 2014. Identification of the giant impactor Theia in lunar rocks. Science, v. 344, p. 1146-1150). It turns out that there is a 12 ppm difference in the proportion of 17Oin lunar oxygen, sufficient to liken Theia’s geochemistry to that of enstatite chondrites. However, that difference may have arisen by the Earth, once the Moon had formed, having attracted a greater proportion of carbonaceous-chrondrite material during the later stages of planetary accretion by virtue of its much greater gravitational attraction. That would also account for the much higher volatile content of the Earth.

The new data do help to support the giant-impact hypothesis, but still leave a great deal of slack in the big questions: Did Theia form in a similar orbit around the Sun to that of Earth; was the impact head-on or glancing; how fast was the closure speed; how big was Theia and more besides? If Theia had roughly the same mass as the proto-Earth then modelling suggests that about half the mass of both Moon and Earth would be made of Theia stuff, giving the Moon and post-impact Earth much the same chemistry, irrespective of where Theia came from. Were William of Ockham’s ideas still major arbiters in science, then his Razor would suggest that we stop fretting about such details. But continuing the intellectual quest would constitute powerful support for a return to the Moon and more samples…

Fracking in the UK; will it happen?

Whether or not one has read the Tractatus Logico-Philosophicus of Ludwig Wittgenstein, there can be little doubt that one of his most famous quotations can be applied to much of the furore over hydraulic fracturing (fracking) of hydrocarbon-rich shale in south-eastern Britain: ‘Whereof one cannot speak, one must remain silent’ (more pithily expressed by Mark Twain as ‘Better to remain silent and be thought a fool than to speak and remove all doubt’). A press release by the British Geological Survey  in late May 2014 caused egg to appear on the shirts of both erstwhile ‘frackmeister’ David Cameron (British Prime Minister) and anti-fracking protestors in Sussex. While there are oil shales beneath the Weald, these Jurassic rocks have never reached temperatures sufficient to generate any significant gas reserves (see: Upfront, New Scientist, 31 May 2014 issue, p. 6). Yet BGS estimate the oil shales to contain a total of 4.4 billion barrels of oil. That might sound a lot, but the experience of shale fracking companies in the US is that, at best, only about 5% can be recovered and, in cases that are geologically similar to the Weald, as little as 1% might be expected. Between 44 and 220 million barrels is between two and six months’ worth of British oil consumption; and that is only if the entire Wealden shales are fracked.

Areas where petroleum-rich shales occur at the surface in Britain. (credit: British Geological Survey)

Areas where petroleum-rich shales occur at the surface in Britain. (credit: British Geological Survey)

Why would any commercial exploration company, such as Cuadrilla, go to the trouble of drilling wells, even of an ‘exploratory nature’, for such meager potential returns? Well, when there is sufficient hype, and the British Government has gushed in this context for a few years, bigger fish tend to bite and cash flows improve. For instance, Centrica the owner of British Gas forked out $160 million to Cuadrilla in June 2013 for a quarter share in the well-publicised licence area near Blackpool in Lancashire; the grub stake to allow Cuadrilla to continue exploration in exchange for 25% of any profit should commercial quantities of shale-gas be produced.

Sedimentary rock sequences further north in Britain whose geological evolution buried oil shales more deeply are potential gas producers through fracking; an example is the Carboniferous Bowland Shale beneath the Elswick gasfield in west Lancashire, targeted by Cuadrilla. Far greater potential may be present in a large tract of the Pennine hills and lowlands that flank them where the Bowland Shale occurs at depth.

Few people realize just how much detail is known about what lies beneath their homes apart from maps of surface geology. That is partly thanks to BGS being the world’s oldest geological survey (founded in 1835) and partly the sheer number of non-survey geologists who have prowled over Britain for 200 years or more and published their findings. Legally, any excavation, be it an underground mine, a borehole or even the footings for a building, must be reported to BGS along with whatever geological information came to light as a result. The sheer rarity of outcropping rock in Britain is obvious to everyone: a legacy of repeated glaciation that left a veneer of jumbled debris over much of the land below 500m that lies north of the northern outskirts of the London megalopolis. Only highland areas where glacial erosion shifted mullock to lower terrains have more than about 5% of the surface occupied by bare rock. Of all the data lodged with BGS by far the most important for rock type and structure at depth are surveys that used seismic waves generated by vibrating plates deployed on specialized trucks. These and the cables that connected hundreds of detectors were seen along major and minor roads in many parts of Britain during the 1980s during several rounds of licenced onshore exploration for conventional petroleum resources. That the strange vehicles carried signs saying Highway Maintenance lulled most people apart from professional geologists as regards their actual purpose. Over 75 thousand kilometers of seismic sections that penetrated thousands of metres into the Earth now reside in the UK Onshore Geophysical Library (an Interactive Map at UKOGL allows you to see details of these surveys, current areas licenced for exploration and the locations of various petroleum wells).

Seismic survey lines in northern England (green lines) from the interactive map at the UK Onshore Geophysical Library

Seismic survey lines in northern England (green lines) from the interactive map at the UK Onshore Geophysical Library

Such is the detail of geological knowledge that estimates of any oil and gas, conventional or otherwise, residing beneath many areas of Britain are a lot more reliable than in other parts of the world which do not already have or once had a vibrant petroleum industry. So you can take it that when the BGS says there is such and such a potential for oil or gas beneath this or that stretch of rural Britain they are pretty close to the truth. Yet it is their raw estimates that are most often publicized; that is, the total possible volumes. Any caveats are often ignored in the publicity and hype that follows such an announcement. BGS recently announced that as much as 38 trillion cubic metres of gas may reside in British shales, much in the north of England. There followed a frenzy of optimism from Government sources that this 40 years’ worth of shale gas would remove at a stroke Britain’s exposure to the world market of natural gas, currently dominated by Russia, and herald a rosy economic future to follow the present austerity similar to the successes of shale-gas in North America. Equally, there has been fear of all kinds of catastrophe from fracking on our ‘tight little island’ especially amongst those lucky enough not to live in urban wastelands. What was ignored by both tendencies was reality. In the US, fracking experience shows that only 10% at most of the gas in a fractured shale can be got out; even the mighty Marcellus Shale of the NE US underlying an area as big as Britain can only supply 6 years of total US gas demand. Britain’s entire shale-gas endowment would serve only 4 years of British gas demand.

To tap just the gas in the upper part of the Bowland basin would require 33 thousand fracking wells in northern Britain. Between 1902 and 2013 only 19 onshore petroleum wells were drilled here in an average year. To make any significant contribution to British energy markets would require 100 per annum at a minimum. Yet, in the US, the flow rate from fracked wells drops to a mere zephyr within 3 years. Fracking on a large scale may well never happen in Britain, such are the largely unstated caveats. But the current hype is fruitful for speculation that it will, and that can make a lot of cash sucked in by the prospect – without any production whatsoever.

Enhanced by Zemanta

Impact melts and their destination

The work done by an asteroid or a comet that hits the Earth is most obviously demonstrated by the size of the crater that it creates on impact, should it have survived erosion and/or burial by sediments. Since some is done in flinging material away from the impact, the furthest point at which ejecta land is also a rough measure of the power of the hit. All this and much more derived from the kinetic energy of the object, which from Newton’s laws of motion amounts to half the product of the body’s mass and the square of its speed (mv2/2). It’s the speed that confers most energy; doubling the speed quadruples the energy. At a minimum, the speed of an object from far-off in space is that due to acceleration by the Earth’s gravitational field; the same as Earth’s escape velocity (about 11.2 km s-1). In March 1989 Earth had a close encounter with Newton’s laws writ large; an asteroid about 500 m across passed us with just half a million kilometres to spare. Moving at 20 km s-1 it carried kinetic energy of around 4 x 1019J. Had it hit, all of this immense amount would have been delivered in about a second giving a power of 4 x 1019 W. That is more than two hundred times greater than the power of solar heating of the day-side of the Earth. A small part of that power would melt quite a lot of rock.

Vredefort Dome, Free State, South Africa. Imag...

Vredefort Dome impact structure (credit: Wikipedia)

As well as the glass spherules that are one of the hallmarks of impact ejecta on Earth and more so on the Moon’s surface, some of the larger known impact craters are associated with various kinds of glassy rock produced by instantaneous melting. Some of this melt-rock occurs in thin dykes, but sometimes there is an entire layer of once molten ‘country’ rock at the impact site. The most spectacular is in the Manicougan crater in Quebec, Canada. In fact a 1 km thick impact-melt sheet dominates most of the 90 km wide structure and it is reputed to be the most homogeneous large rock mass known, being a chemical average of every rock type involved in the Triassic asteroid strike. Not all craters are so well endowed with an actual sheet of melt-rock. This has puzzled some geologists, especially those who studied the much larger (160 km) Vredfort Dome in South Africa, which formed around 2 billion years ago. As the name suggests this is now a positive circular topographic anomaly, probably due to rebound and erosional unloading, the structure extending down 20 km into the ancient continental lithosphere of the Kaapvaal craton. Vredfort has some cracking dykes of pseudotachylite but apparently no impact melt sheet. It has vanished, probably through erosion, but a relic has been found (Cupelli, C.L. et al. 2014. Discovery of mafic impact melt in the centre of the Vredfort dome: Archetype for continental residua of early Earth cratering? Geology, v. 42, p. 403-406). One reason for it having gone undiscovered until now is that it is mafic in composition, and resembles an igneous gabbro intrusion. Isotope geochemistry refutes that mundane origin. It is far younger than the rocks that were zapped, and may well have formed as huge energy penetrated to the lower crust and even the upper mantle to melt a sizeable percentage of 2.7 to 3.0 Ga old mafic and ultramafic rock.

Oddly, the same issue of Geology contains an article that also bears on the Vredfort Dome structure (Huber, M.S. et al. 2014. Impact spherules from Karelia, Russia: Possible ejecta from the 2.02 Ga Vredfort impact event. Geology, v. 42, p. 375-378). Drill core from a Palaeoproterozoic limestone revealed millimetre-sized glass droplets containing excess iridium – an element at high concentration in a variety of meteorites. The link to Vredfort is the age of the sediments, which are between 1.98 and 2.05 Ga, neatly bracketing the timing of the large South African impact. Using reasonably well-constrained palaeogeographic positions at that time for Karelia and the Kaapvaal craton suggests that the glassy ejecta, if indeed they are from Vredfort, must have been flung over 2500 km.

Enhanced by Zemanta

How the first metazoan mass extinction happened

The end-Ordovician mass extinction was the first of five during the Phanerozoic, andthe first that involved multicelled organisms. It happened in two distinct phases that roughly coincided with an intense but short-lived glaciation at the South Pole, then situated within what is now the African continent. Unlike the other four, this biotic catastrophe seems unlinked to either a major impact structure or to an episode of flood volcanism.

seadiorama ordovician

Artist’s impression of an Ordovician shallow-sea community (credit: drtel)

In 2009 Earth Pages reported the curious occurrence in 470 Ma (Darriwilian Stage) Swedish limestones of a large number of altered chondritic meteorites, possible evidence that there may have been an extraterrestrial influence on extinction rates around that time. In support is evidence that the meteorite swarm coincided with megabreccias or olistostromes at what were then Southern Hemisphere continental margins: possible signs of a series of huge tsunamis. But in fact this odd coincidence occurred at a time when metazoan diversity was truly booming: the only known case of impacts possibly favouring life.

Number One of the Big Five mass extinctions occurred during the late-Ordovician Hirnantian stage (443-445 Ma) and has received much less attention than the later ones. So it is good see the balance being redressed by a review of evidence for it and for possible mechanisms (Harper, D.A.T et al. 2014. End Ordovician extinctions: A coincidence of causes. Gondwana Research, v. 25, p. 1294-1307). The first event of a double-whammy mainly affected free-swimming and planktonic organisms and those of shallow seas; near-surface dwellers such as graptolites and trilobites. The second, about a million years later, hit animals living at all depths in the sea. Between them, the two events removed about 85% of marines species – there were few if any terrestrial animals so this is close to the extinction level that closed the Palaeozoic at around 250 Ma.

No single process can be regarded as the ‘culprit’. However the two events are bracketed by an 80-100 m fall in sea level due to the southern hemisphere glaciation. That may have given rise to changes in ocean oxygen content and in the reduction of sulfur to hydrogen sulfide. Also climate-related may have been changes in the vertical, thermohaline circulation of the oceans, falling temperatures encouraging sinking of surface water to abyssal depths providing more oxygen to support life deep in the water column. Sea-level fall would have reduced the extent of shallow seas too. Those consequences would explain the early demise of shallow water, free swimming animals. Reversal of these trends as glaciation waned may have returned stagnancy and anoxia to deep water, thereby affecting life at all depths. The authors suggest generalized ‘tipping points’ towards which several global processes contributed.

Enhanced by Zemanta

Age calibration of Mesozoic sedimentary sequences: can it be improved?

Relative age sequences in sequences of fossiliferous sediments are frequently intricate, thanks to animal groups that evolved quickly to leave easily identifiable fossil species. Yet converting that one-after-the-other dating to absolute values of past time has been difficult and generally debateable. Up to now it has relied on fossil-based correlation with localities where parts of the sequence of interest interleave with volcanic ashes or lavas that can be dated radiometrically. Igneous rocks can provide reference points in time, so that age estimates of intervening sedimentary layers emerge by assuming constant rates of sedimentation and of faunal speciation. However, neither rate can safely be assumed constant, and those of evolutionary processes are of great biological interest.

Setting Sun at Whitby Abbey

Sunset at St Hilda’s Abbey, Whitby NE England; fabled haunt of Count Dracula (credit: epicnom)

If only we could date the fossils a wealth of information would be accessible. In the case of organisms that apparently evolved quickly, such as the ammonites of the Mesozoic, time resolution might be extremely fine. Isotopic analysis methods have become sufficiently precise to exploit the radioactive decay of uranium isotopes, for instance, at the very low concentrations found in sedimentary minerals such as calcium carbonate. So this prospect of direct calibration might seem imminent. Geochemists and palaeontologists at Royal Holloway University of London, Leicester University and the British Geological Survey have used the U-Pb method to date Jurassic ammonites (Li, Q. et al. 2014. U–Pb dating of cements in Mesozoic ammonites. Chemical Geology, v. 376, p. 76-83). The species they chose are members of the genus Hildoceras, familiar to junior collectors on the foreshore below the ruined Abbey of St Hilda at the small port of Whitby, in NE England. The abundance and coiled shape of Hildoceras was once cited as evidence for the eponymous founder of the Abbey ridding this choice locality of a plague of venomous serpents using the simple expedient of divine lithification.

English: Hildoceras bifrons (Bruguière 1789) L...

Hildoceras from the Toarcian shales of Whitby (credit: Wikipedia)

The target uranium-containing mineral is the calcite formed on the walls of the ammonites’ flotation chambers either while they were alive or shortly after death. This early cement is found in all well-preserved ammonites. The Hildoceras genus is found in one of the many faunal Zones of the Toarcian Age of the Lower Jurassic; the bifrons Zone (after Hildoceras bifrons). After careful selection of bifrons Zone specimens, the earliest calcite cement to have formed in the chambers was found to yield dates of around 165 Ma with precisions as low as ±3.3 Ma. Another species from the Middle Jurassic Bajocian Age came out at 158.8±4.3 Ma. Unfortunately, these precise ages were between 10-20 Ma younger than the accepted ranges of 174-183 and 168-170 Ma for the Toarcian and Bajocian. The authors ascribe this disappointing discrepancy to the breakdown of the calcium carbonate (aragonite) forming the animals’ shells from which uranium migrated to contaminate the after-death calcite cement.

Enhanced by Zemanta